
Equilibria in Multiplayer Timed Games with

Reachability Objectives

Shankara Narayanan Krishna, Samarth Mishra

Department of Computer Science and Engineering,
IIT Bombay, Powai, Mumbai-76, India.
{krishnas,samarth}@cse.iitb.ac.in

Abstract. Timed automata [1] are a well accepted formalism in mod-
elling real time systems. In this paper, we study sequential multiplayer
games on timed automata with costs attached to the locations and edges
and try to answer the question of the existence of Nash Equilibrium
(NE), Leader Equilibrium (LE) (or Stackel Equilibrium) [3] and Incen-
tive Equilibrium(IE) [2]. Considering memoryless strategies, we show
that with three clocks it is undecidable whether there exists a NE(LE
or IE) where player 1, in a two-player game, has a cost bounded by a
constant B.

1 Introduction

The concept of games on automata has been introduced with the central idea
of multiple players making the automaton run in order to fulfil their interests.
These games are classified into competitive and non-competitive games. In com-
petitive games, one player wins the game while the others lose the game. In
non-competetive games, there is no notion of winning or losing; each player
plays the game in a way so that she gets a favourable outcome.

The games we consider in this paper are non-competetive, with 2 or more
players on weighted timed automata. Costs are attached to the locations as well
as edges. We show that 3 clocks are sufficient to obtain undecidability for the
existence of NE (LE or IE). The definitions we use for Incentive Equilibrium and
Leader Equilibrium are as mentioned in [2] and [3] respectively.

2 Preliminaries

2.1 Weighted Timed Automata (WTA)

We recall the definition of WTAs as in [5].
A weighted timed automaton is a tuple A = (L,L0, X, Z,E, η, C) where L is

a finite set of locations, L0 ⊆ L is a set of initial locations, X is a finite set of
clocks, Z is a finite set of costs (let |Z| = m), E ⊆ L×C(X)×U0(X)×L is the
set of transitions. A transition e = (l, ϕ, φ, l′) ∈ E is a transition from l to l′ with
valuation ν ∈ T

X satisfying the constraint ϕ, and φ gives the set of clocks to be

reset. η : L → C(X) defines the invariants of each location. C : L ∪ E → N
m

is the cost function which gives the rate of growth of each cost. Note that the
costs are called stopwatches if C : L ∪ E → {0, 1}m. From the nature of the
costs and stopwatches, it is clear that stopwatches are restricted costs. WTA
with stopwatches form a subclass of WTA with costs.

The semantics of a WTA A = (L,L0, X, Z,E, η, C) is given by a labelled
timed transition system TA = (S,→) where S = L × T

X × T
Z . We refer to an

element l ∈ L of a WTA A as a location while we refer to an element (l, ν, µ) ∈ S

of TA as a state. The terms transition and edge are used interchangeably. → is
composed of transitions

– Time elapse t in l: A state (l, ν, µ) after time elapse t evolves to (l′, ν′, µ′),
where l′ = l, ν′ = ν + t, µ′ = µ+C(l) ∗ t and for all 0 ≤ t′ ≤ t, ν + t′ |= η(l).

– Location switch: (l, ν, µ)
(ϕ,φ)
−→ (l′, ν′, µ′) if there exists e = (l, ϕ, φ, l′) ∈ E,

such that ν |= ϕ, ν′ = ν[φ := 0] and µ′ = µ+C(e). Here, ν |= η(l), ν′ |= η(l′).

A path is a sequence of consecutive transitions in the transition system TA. A

path ρ starting at (l0, ν
′
0, µ

′
0) is denoted as ρ = (l0, ν

′
0, µ

′
0)

t1−→ (l0, ν1, µ1)
(ϕ1,φ1)
−→

(l1, ν
′
1, µ

′
1)

t2−→ (l1, ν2, µ2)
(ϕ2,φ2)
−→ (l2, ν

′
2, µ

′
2) · · · (ln, ν

′
n, µ

′
n). Note that νi = ν′i−1+

(ti − ti−1), νi |= ϕi, ν′i = νi[φ := 0] and µi = µ′
i−1 + C(li−1) ∗ (ti − ti−1),

µ′
i = µi + C(li−1, ϕi, φi, li).

2.2 Deterministic Two Counter Machines

A deterministic 2-counter machine M with counters c1 and c2 is described by a
program formed by five basic instructions:

– lm : goto lj ;
– lm : if ci = 0 then goto lj else goto lk; (check for zero)
– lm : ci := ci + 1, goto lj ;(increment counter ci)
– lm : ci := ci − 1, goto lj ; (decrement counter ci. A decrement instruction for

ci is always preceded by a check for zero for ci so that M does not get stuck)
– lm : HALT;

Without loss of generality, assume that the instructions are labelled l1, . . . , ln
where ln = HALT (a special instruction) and that to begin with, both counters
have value zero. Let L = {li | 1 ≤ i ≤ n} be the labels of the instructions in M.
A configuration of the two counter machine is a tuple (l, n1, n2) ⊆ L × N × N.
A configuration tells us the current instruction of M as well as the values of
c1, c2. The behavior of the machine is described by a possibly infinite sequence
of configurations (l0, 0, 0), (l1, C

1
1 , C

1
2), . . . (lk, C

k
1 , C

k
2) . . . where Ck

1 and Ck
2 are

the respective counter values and lk is the label of the kth instruction. The
halting problem of such a machine is known to be undecidable [?].

Let VM = {(c1, c2) | ∃l such that M visits (l, c1, c2)} be the set of all pairs
of values of counters c1, c2 which result from M. Two configurations (l, a, b) and
(l′, a′, b′) are distinct if l 6= l′ or a 6= a′ or b 6= b′. Clearly, VM is finite iff M
visits finitely many distinct configurations.

3 Timed Multiplayer Reachability Game

The timed multiplayer reachability game structure is defined as a tuple G =
(L,L0, X, Z, P,E, η, C, F) where, L is a finite set of locations, L0 ⊆ L is the
singleton set containing the initial location, F is a set of final or target locations
and X is a finite set of clocks; Z is a set of n cost variables, where n is the number
of players. P is the set of n players {P1, P2 . . . Pn} ; E ⊆ L×L×Θ(X)×2X is the
set of transitions, where Θ(X) is the set of all intervals for each of the clocks from
which constraints on edge transitions are decided and 2X corresponds to the set
of clocks which are reset on taking that transition. η : L → Θ(X) is a function
assigning clock valuation invariants to each location; C : L → N

n is a function
associating cost growth rate to each of the players on the game locations. The
game is then defined on the above structure as : The set of locations is partitioned
into L1, L2, . . . Ln where Li is the set of locations which belong to the player Pi.
At each location, the owner of that location chooses an edge ei ∈ E and a time
delay ti. Suppose from a state q = (l, ν, µ), l ∈ Li, player Pi chooses edge ei

and time delay ti, then there exist states q′, q′′ such that q = (l, ν, µ)
ti−→ q′ =

(l, ν + ti, µ
′)

ei−→ q′′ = (l′′, ν′′, µ′′). where the state transitions are as defined in

Section 2.1, with a slight difference that as the edge
ei−→ is taken, there is no

further cost incurred for any of the players. Also note that here, ν |= η(l) and
ν′′ |= η(l′′) and ν+ti satisfies the transition edge constraints on clock valuations.

A strategy for a player Pi is a function λi : S → (R+ × Ei) ∪ {∞} (where
S is the set of all possible values of (li, ν, µ) where ν |= η(li) and li ∈ Li, close
to the definition in Section 2.1), such that if λi(q) = (ti, ei), then it possible
to incur a delay of ti at a state q, and then take a discrete transition ei. Note
that a delay ti of ∞ is allowed if η(li) allows it. A strategy profile is an n-tuple
(λ1, λ2 . . . λn) of strategies where λi is a strategy for player Pi. A run ρ is said to
be played according to a strategy profile if for each node li that the game visits,
the outgoing edge ei and the time delay ti are chosen according to λi (assuming
li ∈ Li). ρ in the above case, is said to be the outcome of λ and is denoted as
outcome(λ). We also define the final accumulated costs for each of the players,
as a function of the run, such that ui(ρ) is the final accumulated cost for player
Pi. An n-tuple of all these costs for a given run, u(ρ) = (u1(ρ), u2(ρ) . . . un(ρ)).
The strategies we consider are memoryless, since we only look at the current
state to decide the next move. A terminal history is a run ρ starting from the
initial location, ending in a target location and never passing through a target
location in between. Given a terminal history ρ, the payoff of player i is −ui(ρ)
where ui(ρ) is the cost accumulated along ρ. For a run ρ that does not end in a
target location, the payoff for both players is ∞. The objective of each player is
to reach a target location accumulating as small a cost as possible. Our games
are therefore non-competetive, since neither player aims to increase the others’
cost.

4 Examples

In the example figure 4.1, nodes 1,4 and 8 belong to player 1, node 2 belongs to
player 2, node 3 belongs to player 3, and the remaining are target nodes. Note
that the owner of the target nodes do not matter because there are no moves left
after reaching one of those locations. In the example given, location i has been
represented as li and the edge between locations li and lj as eij . Note that in the
examples below, the strategy we’ve mentioned is independent of the initial clock
valuations when the node is arrived at (because the clock is being reset after each
edge). Also, the strategy mentioned is independent of the cost accumulated by
each of the players. Hence, in the examples given below, we change our notation
for strategy λ slightly and is now represented as λ(l) instead of λ(l, ν, µ).

Fig. 4.1. A multiplayer timed reachability game

4.1 Nash Equilibrium

The strategy profile λ = (λ1, λ2, λ3) is a Nash Equilibrium, where λ1(l1) =
(1, e16), and λ2 and λ3 can be any strategies. Note that λ2 and λ3 need not
be defined in the above strategy profile, given λ1, because the game wouldn’t
progress to a point where the location belongs to Player 2 or 3. It can be seen
that Player 1 can’t unilaterally deviate from this strategy to (strictly) decrease
his total cost incurred. In the above example, u(outcome(λ)) = (2, 3, 3).

4.2 Leader Equilibrium

In the example under consideration, player 2 is the leader. The following strategy
profile is a leader equilibrium : λ = (λ1, λ2, λ3), where λ1(l1) = (1, e12), λ2(l2) =
(2, e27) and λ3 need not be defined due to reasons similar to that mentioned in
the previous section, i. e., section 4.1.

It can be seen that the above strategy profile is a leader strategy profile
because player 1 can’t strictly benefit by unilaterally deviating. Also, this is the
best cost for player 2 among all leader strategy profiles, and hence is a leader
equilibrium.

4.3 Incentive Equilibrium

In an incentive strategy profile, the leader can provide an incentive to each of
the other players by offering to take some cost from the player if he/she chooses
some edge as suggested by the leader. Here, the strategy profile λ, also consists
of a function ι : {P1 . . . Pn}−{Pl} → R≥0, where Pl is the leader and ι(Pi) gives
the incentive given to (or cost taken from) Pi in that strategy profile.

An incentive strategy profile which corresponds to an incentive equilibrium in
our example game graph is: λ = (λ1, λ2, λ3, ι), where λ1(l1) = (0, e12), λ1(l8) =
(1, e89), λ1(l2) = (1, e23), λ3(l3) = (2, e38), ι(P1) = 1, ι(P3) = 1. It can be seen
that the above strategy profile is an incentive equilibrium and u(outcome(λ)) =
(2, 6, 4).

5 Existence of Nash Equilibrium

In this section, we show that the existence of a NE such that player P1 has a
payoff bounded by a constant B is undecidable. First, we show that the following
question regarding two counter machines is undecidable, and then use it to prove
our result. The proof for theorem 1 has been re-written exactly as has been given
in [4].

Q1: Given a two counter machine M, is it decidable whether, starting from a
configuration (q0, 0, 0), M will visit finitely many distinct configurations?

Proposition 1. Question Q1 is undecidable.

Proof. The halting problem for two counter machines is known to be undecid-
able. We show a reduction of the halting problem to the problem in question
Q1. Assume that there is an algorithm AM to detect whether M visits finitely
many distinct configurations starting from (q0, 0, 0).

– If M indeed visits only finitely many distinct configurations, then we simu-
late M starting from the initial configuration, maintaining a list of visited
configurations until it halts, or it revisits a previously visited configuration.
In the latter case, we conclude that M does not halt. Note that since M
visits only finitely many configurations, one of the above outcomes is bound
to happen.

– If M visits infinitely many distinct configurations, then we conclude that it
does not halt.

Thus, AM yields a solution to the halting problem of M. Since we know that
this is not possible, the question of whether M visits finitely many distinct
configurations starting from a configuration (q0, 0, 0) is undecidable. ⊓⊔

Theorem 1. Given a timed 2-player reachability game structure G with three

clocks and stopwatch costs, it is undecidable if there exists an NE (λ1, λ2) for

the corresponding game, in the outcome of which P1 incurs a cost bounded by a

constant B; that is, u1(outcome(λ1, λ2)) < B.

Proof. We construct a timed game structure G with 3 clocks x1, x2, x3 that
simulates a two counter machine M. The clocks x1, x2, x3 encode the counter
values c1, c2 as follows: At the end of each module in G,

ν(x1) = 1
2c13c2 , ν(x2) = 0.

The clock x3 is used to do calculations and is used for rough work. We show
that G has an NE (λ1, λ2) such that u1(outcome(λ1, λ2)) < 6 iff M visits only
finitely many distinct configurations.

Construction of G

In all locations of G, we add a loop with constraint xi = 1, i ∈ {1, 2, 3} and
reset it when xi reaches 1. For convenience, we will not draw this in any of the
locations in the various modules. We would also omit this loop from the player
strategy when mentioned. The loop is as depicted below. This loop ensures that
the values of x1, x2 are always related to each other in one of the following ways:

ν(x1) − ν(x2) = 1
2c13c2 , 0 ≤ x2 ≤ x1 ≤ 1, or

ν(x2) − ν(x1) = 1 − 1
2c13c2 , 0 ≤ x1 ≤ x2 ≤ 1.

xi = 1?xi := 0

0 ≤ xi ≤ 1

Fig. 5.1. Loop on all locations to ensure that 0 ≤ xi ≤ 1 for i ∈ {1, 2, 3}

G is constructed by connecting the modules simulating the various incre-
ment, decrement and zero check instructions according to M. For example, if
M contains the instructions l1: Increment c1, goto l2, l2: if c1 > 0, goto l3, else
HALT, and l3: decrement c1, goto l1, then G is obtained by connecting the mod-
ules for incrementing c1, checking if c1 is zero, then decrementing c1 in a round
robin fashion. We describe below, the modules for increment, decrement as well
as zero check. In each of the modules, a rectangular node represents a location

belonging to player P2, and the oval node represents a a player P1 node. In the
following text, we will use ”player 1” and ”player P1” interchangeably. For ease
of notation, we have used in the locations costs ∈ N instead of just 0 and 1.
It must be noted that a location which uses a cost other than 0 and 1 can be
replaced with a sequence of locations, each of which have costs over {0, 1}2. We
have illustrated this in the case of Figure 5.3. This can be done for all the figures
we have drawn.

Simulation of an increment instruction li: increment c1, goto lj:

(0,0) (0,0) (0, 0) (0, 0)

WI2< WI2> Abort

(0, 0)

li M x3 = 0 ljM1 x3 = 0
x1 = 1?

x1 := 0 x3 := 0 x2 := 0

e1
e2

Fig. 5.2. Module for incrementing c1

Figure 5.2 is the module for incrementing c1. On entry into this module, the
values of clocks x2, x3 is 0. If the first instruction of M is an increment instruc-
tion, then on entry, ν(x1) = ν(x2) = ν(x3) = 0. Note that in the beginning
c1 = c2 = 0, so that ν(x2) − ν(x1) = 1 − 1

2c13c2 .

Assume that the clock valuations of x1, x2, x3 on entry is given by the tuple
(xold, 0, 0) where xold is of the form 1

2c13c2 . On leaving li, x1 = 0, x2 = x3 =
1− xold. A non-deterministic amount of time xnew is spent in the next location.
On coming out of this location, x3 is reset to zero, so that x1 = xnew , x2 =
1 − xold + xnew or xnew − xold and x3 = 0 (Note that if xnew < xold, then
x2 = 1 − xold + xnew and if xnew > xold, then x2 = xnew − xold due to the
self loop on all locations). If xnew = xold, then x2 = 0 (note that when x2 = 1,
the self loop resets x2 to zero). No time delay can happen at location M or M1

due to the invariant x3 = 0. Player 1, at M1, has two choices of going to the
Abort widget or continuing with the simulation of M, while player 2, at M , can
check whether xnew is indeed xold

2 by going to the widgets WI2< or WI2>. We
now consider the three cases when xnew = xold

2 , xnew > xold

2 and xnew < xold

2 .

Let us look at the widgets WI2< and WI2> with respect to this. We explain
in detail the widget WI2<. On entry into WI2<, x1 = xnew, x2 = 1 − xold + xnew

(or x2 = xnew − xold). We walk through the locations of WI2< and list down the
values of the clocks as well as the costs incurred by the players. Note that till the
entry into widgets WI2<,WI2> and Abort, no cost is incurred by either player.

As given by Table 1, the costs incurred by P1 and P2 at the end of the widget
WI2< are respectively 3(xold−2xnew +2) and 3(2xnew−xold +2). If xnew = xold

2 ,
then the costs are both 6, while if xnew < xold

2 then P1 incurs a cost > 6 while P2

incurs a cost < 6. If xnew > xold

2 , then the cost incurred by P1 is < 6 while that

(0,0)

(3, 0) (0,3) (0,6) (6,0) (0, 3)

(0, 0)

I1

A B

x1 = 1?x1 := 0

x2 = 1?

x2 := 0

x1 = 1?

x1 := 0

x3 = 1?

x3 := 0

x1 = 1?

x1 := 0

x1 = 1? x1 := 0

Fig. 5.3. Widget WI2<

Location of ν(x1) ν(x2) ν(x3) Accumulated cost Accumulated cost
WI2< on entry on entry on entry of P1 on entry of P2 on entry

Initial xnew 1− xold + xnew 0 0 0
or xnew − xold

2 0 1− xold 1− xnew 0 0

3 xold 0 1− xnew + xold 3xold 0

4 0 1-xold 1- xnew 3xold 3 (1-xold)

5 xnew 1-(xold − xnew) 0 3xold 3 (1-xold) + 6xnew

6 0 1-xold 1-xnew 3xold + 6(1− xnew) 3 (1-xold) + 6xnew

7 0 1-xold 1-xnew 3xold + 6(1− xnew) 3 (1-xold) + 6xnew + 3

Table 1. Clock valuations and costs incurred in WI2<

of P2 is > 6. The widget WI2> is obtained by switching the costs in all locations
of WI2<.

The costs incurred by P1, P2 at the end of WI2> are respectively 3(2xnew −
xold +2) and 3(xold−2xnew +2). The widgets WI2<,WI2> respectively are player
2’s opportunities to catch player 1 when xnew < xold

2 and xnew > xold

2 . Note that
if xnew < xold

2 , then P2 can move into WI2<, by a strategy λ2(M, (xnew , 1−xold+
xnew , 0), (0, 0)) = (0, e1) and can move into WI2> by a strategy λ2(M, (xnew , 1−
xold + xnew , 0), (0, 0)) = (0, e2) if xnew > xold

2 .

Note that for incrementing c2, widgets WI3< and WI3> can be constructed which
will check if xnew = xold

3 .

Simulation of a decrement instruction li: decrement c1, goto lj:

Since we have assumed that a decrement instruction is preceded by a zero
check instruction, the above module starts with x1 = 1

2c13c2 and ends with
x1 = 1

2c1−13c2
, with c1 − 1 ≥ 0. This is similar to the module in Figure 5.2.

On entry, x1 = xold, where xold is of the form 1
2c13c2 , c1 > 0 and x2 = x3 =

0. A non-deterministic amount of time xnew is spent in the second location
in Figure 5.5. Player 2 can check if xnew = 2xold by entering either of the
widgets WD2

< or WD2
>. WD2

<,WD2
> respectively are player 2’s chances to

catch player 1 respectively when xnew < 2xold and xnew > 2xold by choos-
ing strategies λ2(N, (xnew , xnew − xold, 0), (0, 0)) = (0, e′1) if xnew < 2xold and
λ2(N, (xnew , xnew−xold, 0), (0, 0)) = (0, e′2) if xnew > 2xold. In these cases, player
1 incurs a cost > 6, while if xnew = 2xold, the cost is exactly 6. Table 2 runs us
through the clock valuations and accumulated costs incurred by the players in
WD2

>. Note that till the time a widget is entered, no cost is incurred by either
player. The widget WD2

< is obtained by switching the costs in all locations of
WD2

>.

(0,0)

(1,0) (0,0) (1,0) (0,0)

(1,0)(0,3)

I1

A0 A1 A2 A3

A4B

x1 = 1?x1 := 0

x2 = 1?

x2 := 0

x1 = 1?

x1 := 0

x2 = 1?

x2 := 0

x1 = 1? x1 := 0

x2 = 1?

x2 := 0

Fig. 5.4. The location A in Figure 5.3 can be replaced by the path consisting of the
locations A0, A1, A2, A3, A4. The cost accumulated between A0 and B is (3xold, 0)
which is the same as the cost accumulated between A and B. This can be done for all
locations with costs (i, j) where i or j /∈ {0, 1} in a way that the accumulated costs are
same.

(0,0) (0,0) (0, 0) (0, 0)

WD2

< WD2

> Abort

(0, 0)

li N x3 = 0 ljN1 x3 = 0
x1 = 1?

x1 := 0 x3 := 0 x2 := 0

e′1
e′2

Fig. 5.5. Module for decrementing c1

The costs incurred by P1, P2 respectively at the end of the widget WD2
> are

3(xnew − 2xold + 2) and 3(2xold − xnew + 2). Clearly, if xnew > 2xold, P1 incurs
a cost > 6, while P2 incurs a cost > 6 when xnew < 2xold. The widget WD2

< is
similar and is given below. The costs incurred by P1, P2 at the end of this widget
respectively are 3(2xold − xnew + 2) and 3(xnew − 2xold + 2).

Note that for decrementing c2, widgets WD3
< and WD3

> can be constructed
which will check if xnew = 3xold.

Simulation zero check li: if c2 = 0, goto lj, else goto lk:

Figure 5.7 is the module for simulating the instruction for zero check of c2.
The invariant x3 = 0 enforces no time be spent at locations li, Z and NZ. Player
1 can non-deterministically choose to goto Z or NZ. In a correct simulation,
player 1 must goto Z when c2 = 0 and to NZ when c2 6= 0. Otherwise, player
2 can move into widgets Check c2 = 0 and Check c2 > 0. We now explain the
functionality of the widgets Check c2 = 0 and Check c2 > 0. Check c2 = 0 is the
widget for ensuring that c2 is zero, while the widget Check c2 > 0 ensures that
c2 is non-zero. The locations J,K,L in the widget Check c2 = 0 form a loop that
repeatedly multiplies x1 by 2 until x1 becomes 1. Note that this is possible only
if c2 = 0. The widgets WD2

< and WD2
> can be invoked by player 2 to check

that this multiplication goes on correctly in each round (that is, xnew = 2xold).
The location T 1 in widget Check c2 = 0 can be reached only when x1 becomes
1, which is possible only if c2 = 0. Check c2 > 0 is similar to Check c2 = 0.
The upper loop CDE repeatedly multiplies x1 by 2, while the lower loop CDG

multiplies x1 by 3. This continues till x1 = 1
3 . The location T 2 can be reached

(0,3)

(3,0) (0,0) (0,6) (6,0) (0,3)

(0,0)

J2

x1 = 1?x1 := 0

x3 = 1?

x3 := 0

x1 = 1?

x1 := 0

x2 = 1?

x2 := 0

x1 = 1?

x1 := 0

x1 = 1? x1 := 0

Fig. 5.6. Widget WD2

>

Location of ν(x1) ν(x2) ν(x3) Accumulated cost Accumulated cost
WD2

> on entry on entry on entry of P1 on entry of P2 on entry

Initial xnew 1− xold + xnew 0 0 0
or xnew − xold

2 0 1− xold 1− xnew 0 3(1− xnew)

3 xnew xnew − xold 0 3xnew 3(1− xnew)

4 0 1-xold 1- xnew 3xnew 3(1− xnew)

5 xold 0 1-(xnew − xold) 3xnew 3(1− xnew) + 6xold

6 0 1-xold 1-xnew 3xnew + 6(1− xold) 3(1− xnew) + 6xold

7 0 1-xold 1-xnew 3xnew + 6(1− xold) 3(1− xnew) + 6xold + 3

Table 2. Clock valuations and costs incurred in WD2

>

only in this case, which can happen only when c2 > 0. Player 2 can invoke the
widgets WD2

> or WD2
< as part of the upper loop to check if multiplication by

2 is happening correctly and widgets WD3
> or WD3

< with respect to the lower
loop to check if multiplication by 3 is happening correctly.

Note that if player 1 enters Z(NZ) when c2 > 0(c2 = 0), then the locations
T 1, T 2 in the widgets Check c2 = 0 and Check c2 > 0 can never be reached.
Further, if player 1 enters Z when c2 > 0, the transition from J to K cannot
be taken. Likewise, if NZ is entered when c2 = 0, the transition from C to
D cannot be taken. The only way then to reach a target location in widgets
Check c2 = 0 and Check c2 > 0 is when player 2 forces a move into one of
the widgets WDi

> or WDi
< (i ∈ {2, 3}). This can make player 1 incur a cost

≥ 6. If the simulation is correct and player 1 enters Z(NZ) diligently (by hav-
ing a strategy λ1(li, (xold, 0, 0), (0, 0)) = (0, ez) if xold is of the form 1

2m and
λ1(li, (xold, 0, 0), (0, 0)) = (0, enz) if xold is of the form 1

2m3n , n > 0), then lj (lk)
is reached).

Player 1 can enter the widget Abort after the simulation of any instruction.
On entering this module, c2 is decremented and c1 is incremented until c2 be-
comes zero. This is followed by incrementing c1 once more, so that starting with
x1 = 1

2c13c2 , x2 = x3 = 0 in Abort, we obtain x1 = 1
2c1+c2+1 , x2 = x3 = 0 at

location H . The costs incurred by P1 and P2 if all increment and decrement in-
structions are executed correctly on reaching location F in Abort are 5+ 1

2c1+c2+1

and 6 respectively. We will use this in the proof below.

(0,0)

(0,0) Check c2 = 0 (0,0)

(0, 0) Check c2 > 0 (0,0)
li

x3 = 0

NZ lk

x3 = 0

Z

x3 = 0

lj

ez

enz

Fig. 5.7. Zero Check for c2

(0,0) (0,0)

(0,0)

(0,0) (0,0)

WD2

> WD2

<T1

x3 = 0

LKJ

x1 := 0

x1 = 1?, x2 > 0? x3 := 0

x1 = 1?, x2 = 0?
x2 := 0, x3 := 0

Fig. 5.8. Check c2 = 0

Existence of bounded NE in G ⇔ finiteness of VM

Having finished the details on the construction of G, we now prove that

M visits finitely many distinct configurations iff there exists a NE in the
outcome of which player 1 has a cost bounded above by 6.

1. Assume that M visits finitely many distinct configurations. Then the num-
ber of distinct pairs of values (c1, c2) is finite. Recall from Section 2.2 that
VM = {(c1, c2) | ∃q such that M visits (q, c1, c2)}, the set of all pairs of
values of counters c1, c2 which result from M. Clearly, VM is finite iff M
visits finitely many distinct configurations. If M visits finitely many distinct
configurations, let cmax = max{c1 + c2 | (c1, c2) ∈ VM}.
Consider the strategy profile (λ∗

1, λ
∗
2) given as follows:

– λ∗
1 is the strategy for P1 which suggests it to correctly simulate M until

the counters attain values summing up to cmax, and then to enter the
widget Abort. In Abort, correctly simulate widgets Increment c1 and
Decrement c2 until c2 = 0.

– λ∗
2 is the strategy for P2 which suggests it to enter any of the widgets

WD2
<, WD3

<, WD2
>, WD3

>, WI2>, WI3>, WI2<, WI3<, Check c2 = 0,
Check c2 > 0, Check c1 = 0 or Check c1 > 0 when P1 makes a sim-
ulation error. Precisely, λ∗

2 is the strategy for P2 such that it enters
WI2>(WI2<) when xnew > xold

2 (xnew < xold

2), WI3>(WI3<) when xnew >
xold

3 (xnew < xold

3), WD2
>(WD2

<) when xnew > 2xold(xnew < 2xold), and
WD3

>(WD3
<) when xnew > 3xold(xnew < 3xold).

The outcome of (λ∗
1, λ

∗
2) is a run in which instructions of M are simulated

correctly until counter values sum up to cmax, followed by the widget Abort.
P2 does not execute any transitions in this run. Hence,

u1(outcome(λ∗
1, λ

∗
2)) = 5 + 1

2cmax+1 , u2(outcome(λ∗
1, λ

∗
2)) = 6

(0, 0) (0, 0) (0, 0)

(0, 0) WD2

>

WD2

<

(0, 0)

WD3

>

WD3

<

(0, 0)T2

x3 = 0

E

x3 = 0

G

C

D
x1 := 0

x1 = 1?, x2 > 0?

x3 := 0

x2 := 0, x3 := 0

x3 := 0

x2 := 0, x3 := 0

x1 = 1

3
?

x2 = 0?

Fig. 5.9. Check c2 > 0

(0, 0) Decrement c2 Increment c1

Check c2 > 0 Check c2 = 0 (0, 0)

Increment c1

(0, 1)

H

(1, 1)(5, 5)(0, 0)

x3 = 0

x3 = 0

F

x2 = 0?, x3 = 0? x2 = 0?
x3 = 0?

x3 = 0?
x1 = 1?

x1 := 0

x2 = 1?

x2 := 0x2 = 1?

Fig. 5.10. Abort

We prove that (λ∗
1, λ

∗
2) is a NE. Clearly, the cost incurred by P1 in this

strategy profile is < 6. To prove that (λ∗
1, λ

∗
2) is an NE, we have to show that

– For any strategy λ1 of P1 such that λ1 6= λ∗
1, u1(outcome(λ∗

1, λ
∗
2)) ≤

u1(outcome(λ1, λ
∗
2)), and

– For any strategy λ2 of P2 such that λ2 6= λ∗
2, u2(outcome(λ∗

1, λ
∗
2)) ≤

u2(outcome(λ∗
1, λ2)).

Note that the game reaches a target location only if one of the widgets WD2
<,

WD3
<, WD2

>, WD3
>, WI2>, WI3>, WI2<, WI3<, Check c2 = 0, Check c2 > 0,

Check c1 = 0, Check c1 > 0 or Abort is invoked.

(a) Assume that u1(outcome(λ1, λ
∗
2)) < u1(outcome(λ∗

1, λ
∗
2)). That means,

u1(outcome(λ1, λ
∗
2)) < 5+ 1

2cmax+1 . Since u1(outcome(λ1, λ
∗
2)) is bounded

above by a finite value, it must be that the outcome of (λ1, λ
∗
2) is a run

ending in a target location. We consider various cases for this target.
i. Assume the target location is in WI2>. Since λ∗

2 is such that it enters
WI2> when P1 has committed a simulation error, P2 will enter WI2>
on a clock valuation (xnew , 1−xold +xnew, 0) such that xnew > xold

2 .
Then the cost incurred by P1 is u1(outcome(λ1, λ

∗
2)) > 6 > 5 +

1
2cmax+1 , which is a contradiction to our assumption.

ii. Assume the target location is in WI2<. Again, since λ∗
2 is such that

it enters WI2< when P1 has committed a simulation error, P2 will
enter WI2< on a clock valuation (xnew , 1 − xold + xnew , 0) such that
xnew < xold

2 . Then the cost incurred by P1 is u1(outcome(λ1, λ
∗
2)) >

6 > 5 + 1
2cmax+1 , which is a contradiction to our assumption.

iii. Assume the target location is in WD2
>. λ∗

2 is such that it enters
WD2

> from a clock valuation (xnew , 1 − xold + xnew , 0) such that
xnew > 2xold, the cost incurred by P1 is u1(outcome(λ1, λ

∗
2)) > 6 >

5 + 1
2cmax+1 , which is a contradiction to our assumption.

iv. The cases of WD2
<, WD3

>, WD3
<, WI3< and WI3> are similar.

v. The location is in Check c2 = 0 or Check c2 > 0. In this case, the
target location must be in one of WD2

>,WD2
<, WD3

>, WD3
<, WI2<,

WI2>, WI3< or WI3>. The cases considered above apply.
vi. The target location is F in the widget Abort. Since λ1 6= λ∗

1, P1

must have entered Abort before cmax is attained as the sum of the
counter values (of course, P1 simulates all the way correctly till it
enters Abort and in Abort; if not, then the earlier cases apply). Then,
u1(outcome(λ1, λ

∗
2)) = 5 + 1

2c1+c2+1 where c1 + c2 < cmax. Then

u1(outcome(λ1, λ
∗
2)) > 5 + 1

2cmax+1 , contradicting our assumption.
Thus, in all cases, we have u1(outcome(λ∗

1, λ
∗
2)) ≤ u1(outcome(λ1, λ

∗
2))

for all strategies λ1 6= λ∗
1.

(b) Assume that u2(outcome(λ∗
1, λ2)) < u2(outcome(λ∗

1, λ
∗
2)). That means,

u2(outcome(λ∗
1, λ2)) < 6. Since u2(outcome(λ∗

1, λ2)) is bounded above
by a finite value, it must be that the outcome of (λ∗

1, λ2) is a run ending
in a target location. We consider various cases for this target. The target
location cannot be F in Abort, since P2 incurs a cost 6 in this widget.

i. The target location is in WD2
<. Since λ∗

1 suggests to P1 to correctly
simulate instructions till cmax is attained and also inside Abort,
WD2

< must have been entered from a valuation (xnew , 1 − xold +
xnew , 0) such that xold = 2xnew. In this case, P2 incurs a cost 6,
which means u2(outcome(λ∗

1, λ2)) = 6 contradicting the assumption.
ii. The target location is in WD2

> or WD3
< or WD3

> or WI3< or WI3>
or WI2< or WI2>. In all these cases, by choice of λ∗

1, P1 correctly
simulates the instructions and hence P2 incurs a cost of 6, which
contradicts the assumption.

Therefore, u2(outcome(λ∗
1, λ

∗
2)) ≤ u2(outcome(λ∗

1, λ2)) for all strategies
λ2 6= λ∗

2.

2. Assume that M visits infinitely many distinct configurations. That is, VM

is infinite. Assume further that there exists a NE (λ′
1, λ

′
2) in the outcome of

which P1 incurs a cost bounded above by 6; that is, u1(outcome(λ′
1, λ

′
2)) <

6. The cost being bounded, the run which is in the outcome of (λ′
1, λ

′
2)

must end in a target location. We do a case analysis on the various target
locations and in each case, prove that (λ′

1, λ
′
2) cannot be a NE such that

u1(outcome(λ′
1, λ

′
2)) < 6.

(a) The run ends in a target location of WI2>. The cost incurred by P1 is
3(2xnew − xold + 2) which by assumption is < 6. Then, 2xnew < xold.

This implies that the cost incurred by P2 is 3(xold−2xnew +2) > 6. Now
consider a strategy λ2 for P2 (λ2 6= λ′

2) which suggests that P2 enter
WI2< instead of WI2>. Then the cost incurred by P2 is 3(2xnew−xold+2)
which is < 6 by the condition 2xnew < xold. Then, u1(outcome(λ′

1, λ2)) <
u1(outcome(λ′

1, λ
′
2)) which means that (λ′

1, λ
′
2) is not an NE.

(b) The run ends in a target location of WI2<. The cost incurred by P1 is
3(xold − 2xnew + 2) which by assumption is < 6. Then, xold < 2xnew.
This implies that the cost incurred by P2 is 3(2xnew−xold +2) > 6. Now
consider a strategy λ2 for P2 (λ2 6= λ′

2) which suggests that P2 enter
WI2> instead of WI2<. Then the cost incurred by P2 is 3(xold−2xnew+2)
which is < 6 by the condition xold < 2xnew. Then, u1(outcome(λ′

1, λ2)) <
u1(outcome(λ′

1, λ
′
2)) which means that (λ′

1, λ
′
2) is not an NE.

(c) The cases of WI3< and WI3>, WD2
<, WD2

>, WD3
< and WD3

> are similar.

(d) The target location is F in Abort. Then we know that u2(outcome(λ′
1, λ

′
2))

= 6.

i. Assume that λ′
1 is a strategy by which P1 does not execute all in-

structions of M correctly. Let λ2 be a strategy which asks P2 to enter
a widget (WI2<, WI2>, WI3<, WI3>, WD2

<, WD2
>, WD3

< or WD3
>)

after the first increment/decrement that P1 has made an error on
(based on xnew < xold

2 for WI2< and so on for each widget). Then
the cost incurred by P2 is < 6 (For example, if P2 entered WI2>, its
cost is 3(xold − 2xnew + 2) which is less than 6 since xnew > xold

2).
Thus, u2(outcome(λ′

1, λ2)) < 6 < u2(outcome(λ′
1, λ

′
2)), which im-

plies that (λ′
1, λ

′
2) is not an NE.

ii. Assume that λ′
1 is a strategy by which P1 executes all instructions of

M correctly. Let c1, c2 be the counter values when P1 enters Abort.
On reaching F , u1(outcome(λ′

1, λ
′
2)) = 5+ 1

2c1+c2+1 . As VM is infinite,
there exists (c′1, c

′
2) ∈ VM such that c′1 + c′2 > c1 + c2. Let λ1 be a

strategy which suggests P1 enter Abort after correctly simulating
instructions of M until the counter values sum up to c′1 + c′2, and
then to correctly simulate increments/decrements inside Abort. Then
u1(outcome(λ1, λ

′
2)) = 5 + 1

2c
′

1
+c′

2
+1

< u1(outcome(λ′
1, λ

′
2)) = 5 +

1
2c1+c2+1 , which implies that (λ′

1, λ
′
2) is not an NE.

Thus, we have shown that for a given constant B = 6, M visits finitely many
distinct configurations iff there exists a NE in the outcome of which P1 has a
cost bounded above by B. ⊓⊔

Existence of Leader Equilibrium

We use the same game graph construction G and try to prove this undecidability
using 3 clocks using the same simulation as done in the previous section. Note
that the only change in the theorem statement is that we prove that there exists
a Leader Equilibrium in the outcome of which P1 has a cost bounded above by
6 (a constant positive integer) iff the two counter machine M, that the game
simulates visits only finite number of distinct configurations.

Note that there are 2 cases to work out here, the case when P1 is the leader
and the case where he isn’t.

1. Assume that M visits finitely many distinct configurations. We saw in the
previous section that there exists a strategy profile λ = (λ∗

1, λ
∗
2) such that

u1(outcome(λ∗
1, λ

∗
2)) = 5 + 1

2cmax+1 , u2(outcome(λ∗
1, λ

∗
2)) = 6

– If P1 is the leader

Given the above strategy, it can be seen that P2 can’t improve his cost by
unilaterally deviating from the strategy, because the strategy is a Nash
Equilibrium. Hence, the strategy is a leader strategy profile.
It can also be seen that P1 can have a cost of less than 6 iff he goes to
a final state in an Abort module. And among all the Abort modules, his
best cost would be in the one which has c1+c2 = cmax. Hence, the above
strategy is a leader equilibrium as well.

– If P2 is the leader

In the strategy profile mentioned, which is a Nash Equilibrium, P1 can’t
unilaterally deviate to improve his cost. Hence, the strategy is a leader
strategy profile. Also, since P1 simulates everything correctly, the best
cost that P2 can get is 6, and hence the strategy given is a leader equilib-
rium. Note that P2 can’t suggest P1 to perform a wrong simulation and
then catch him as this will be strictly lossy for P1 and he won’t agree to
such a strategy.

2. Assume that M visits infinitely many distinct configurations. Also assume
that there exists a Leader Equilibrium λ = (λ′

1, λ
′
2) in the outcome of which,

the cost of P1 is bounded above by 6; that is, u1(outcome(λ′
1, λ

′
2)) < 6. In

both the cases, when P1 is a leader and when he is not, the cost of either P1 or
P2 can be reduced by a unilateral deviation by the respective player, as was
seen in the previous section. Hence, (λ′

1, λ
′
2) can’t be a leader equilibrium.

Thus, we have shown that for a given constant B = 6, M visits finitely many
distinct configurations iff there exists a Leader Equilibrium in the outcome of
which P1 has a cost bounded above by B.

⊓⊔

Existence of Incentive Equilibrium

Again, the same game construction is used, and we seek to prove that there
exists an Incentive Equilibrium in the outcome of which, P1 has a cost bounded
above by 6 iff the two counter machine M, that the game simulates visits only
finite number of distinct configurations.

1. Assume that M visits finitely many distinct configurations. We saw in the
previous section that there exists a strategy profile λ = (λ∗

1, λ
∗
2) such that

u1(outcome(λ∗
1, λ

∗
2)) = 5 + 1

2cmax+1 , u2(outcome(λ∗
1, λ

∗
2)) = 6

The incentives given in the strategy profile will be mentioned below, accord-
ing to the case when P1 is the leader, or when he isn’t.
– If P1 is the leader

Assume that the strategy has ι(P2) = 0. Given the above strategy, it can
be seen that P2 can’t improve his cost by unilaterally deviating from the
strategy, because the strategy is a Nash Equilibrium. Hence, the strategy
is an incentive strategy profile.
It can also be seen that P1 can have a cost of less than 6 iff he goes to
a final state in an Abort module. And among all the Abort modules, his
best cost would be in the one which has c1+c2 = cmax. He can’t improve
his cost by changing the strategy of P2 and hence, any incentive given
for the current strategy will only add to his cost, and hence, the given
strategy profile is an incentive equilibrium.

– If P2 is the leader

Assume that the strategy has ι(P1) = 0. In the strategy profile men-
tioned, which is a Nash Equilibrium, P1 can’t unilaterally deviate to
improve his cost. Hence, the strategy is an incentive strategy profile.
Note that for P2 to improve his cost, he would have to make P1 deviate
from his correct simulation strategy, and would have to catch him at
some wrong simulation to drive the cost of P1 beyond 6 and his own
cost below. It can be seen that if the cost of P1 is 6 + δ, then the cost
of P2 will be 6 − δ. To make P1 follow this strategy, an incentive has
to be given so that the cost of P1 is at most the same as the cost he
got in the previous strategy of correct simulation. This incentive equals
δ + 1 − 1

2cmax+1 . This, when added to P2’s cost of 6 − δ will be greater
than 6 and hence, won’t benefit P2. Hence, the strategy (λ∗

1, λ
∗
2) with

the incentive ι(P1) = 0, is an incentive equilibrium.

2. Assume that M visits infinitely many distinct configurations. Also assume
that there exists an Incentive Equilibrium λ = (λ′

1, λ
′
2) in the outcome of

which, the cost of P1 is bounded above by 6; that is, u1(outcome(λ′
1, λ

′
2)) < 6.

In both the cases, when P1 is a leader and when he is not, the cost of either
P1 or P2 can be reduced by a unilateral deviation by the respective player,
as was seen in the previous section. Hence, (λ′

1, λ
′
2) can’t be an incentive

equilibrium.

Thus, we have shown that for a given constant B = 6, M visits finitely many
distinct configurations iff there exists an Incentive Equilibrium in the outcome
of which P1 has a cost bounded above by B.

⊓⊔

6 Timed Multiplayer Mean Pay-off Games : a digression

In this section, we discuss another kind of multiplayer timed game which might
be interesting to discuss.

The timed multiplayer mean pay-off game structure is defined as a tuple
G = (L,L0, X, Z, P,E, η, C) where, L is a finite set of locations, L0 ⊆ L is the
singleton set containing the initial location; X is a finite set of clocks; P is the
set of n players {P1, P2 . . . Pn} Z is a set of n mean-cost variables, where n is
the number of players, such that Zi store the mean cost = cost accumulated

total time elapsed
by

Pi; E ⊆ L × L × Θ(X) × 2X is the set of transitions, where Θ(X) is the set
of all intervals for each of the clocks from which constraints on edge transitions
are decided and 2X corresponds to the set of clocks which are reset on taking
that transition. η : L → Θ(X) is a function assigning clock valuation invariants
to each location; C : L → N

n is a function associating cost growth rate to each
of the players on the game locations. The game is then defined on the above
structure as : The set of locations is partitioned into L1, L2, . . . Ln where Li is
the set of locations which belong to the player Pi. At each location, the owner of
that location chooses an edge ei ∈ E and a time delay ti. Suppose from a state
q = (l, ν, µ), l ∈ Li, player Pi chooses edge ei and time delay ti, then there exist

states q′, q′′ such that q = (l, ν, µ)
ti−→ q′ = (l, ν + ti, µ

′)
ei−→ q′′ = (l′′, ν′′, µ′′).

where the state transitions are as defined in Section 2.1, with a slight difference
that as the edge

ei−→ is taken, there is no further cost incurred for any of the
players. Also note that here, ν |= η(l) and ν′′ |= η(l′′) and ν + ti satisfies the
transition edge constraints on clock valuations.

A strategy for a player Pi is a function λi : S → (R+ × Ei) ∪ {∞} (where
S is the set of all possible values of (li, ν, µ) where ν |= η(li) and li ∈ Li, close
to the definition in Section 2.1), such that if λi(q) = (ti, ei), then it possible
to incur a delay of ti at a state q, and then take a discrete transition ei. Note
that a delay ti of ∞ is allowed if η(li) allows it. A strategy profile is an n-tuple
(λ1, λ2 . . . λn) of strategies where λi is a strategy for player Pi. A run ρ is said to
be played according to a strategy profile if for each node li that the game visits,
the outgoing edge ei and the time delay ti are chosen according to λi (assuming
li ∈ Li). ρ in the above case, is said to be the outcome of λ and is denoted as
outcome(λ). Note that any run ρ according to strategy λ will be of infinite length
(in time). We also define the final accumulated costs for each of the players, as

a function of the run, such that ui(ρ) is the final accumulated cost for player
Pi. An n-tuple of all these costs for a given run, u(ρ) = (u1(ρ), u2(ρ) . . . un(ρ)).
The strategies we consider are memoryless, since we only look at the current
state to decide the next move. A terminal history is a run ρ starting from the
initial location, ending in a target location and never passing through a target
location in between. Given a terminal history ρ, the payoff of player i is −ui(ρ)
where ui(ρ) is the cost accumulated along ρ. For a run ρ that does not end in a
target location, the payoff for both players is ∞. The objective of each player is
to minimize his mean-cost over the run, that is, in the lim t → ∞. These games
are therefore non-competetive, since neither player aims to increase the others’
cost.

Examples

In the example figure 6.1 , player 1 owns node l1, player 2 owns node l2 and player
3 owns nodes l3, l4 and l5. In the example given, location i has been represented
as li and the edge between locations li and lj as eij . Note that in the examples
below, the strategy we’ve mentioned is independent of the initial clock valuations
when the node is arrived at (because the clock is being reset after each edge).
Also, the strategy mentioned is independent of the cost accumulated by each
of the players. Hence, in the examples given below, we change our notation for
strategy λ slightly and is now represented as λ(l) instead of λ(l, ν, µ).

Fig. 6.1. A multiplayer timed mean pay-off game

Nash Equilibrium

The following strategy is a Nash Equilibrium.

λ1(l1) = (1, e14), λ3(l4) = ∞, λ2 need not be specified.

This gives us:

u(outcome(λ)) = (8, 9, 10)

The values are calculated as(an example of u1(outcome(λ)) is shown below:

u1(outcome(λ)) = lim
t→∞

20 + 8(t− 1)

t
= 8

Leader Equilibrium

If player 2 is the leader, the following strategy is a Leader Equilibrium:

λ1(l1) = (1, e12), λ2 = (1, e25), λ3(l5) = ∞

This gives us

u(outcome(λ)) = (8, 8, 11)

Incentive Equilibrium

Note that for an incentive strategy profile, the function ι : P − Pl → R , where
Pl is the leader, is added to the strategy profile. Here, the leader offers to take
a certain amount of mean cost from a player if the player follows the suggested
strategy each time he visits some node. This cost is given by ι(Pi) for a player
Pi.

Again assume that player 2 is the leader. The following incentive strategy
profile is an incentive equilibrium:

λ1(l1) = (1, e12), λ2(l2) = (1, e12), λ3(l3) = ∞
ι(P1) = 1 , ι(P3) = 0

This gives us:

u(outcome(λ)) = (8, 1, 18)

7 Future Work

The two player timed reachability game with one clock has a solution for finding
equilibria. This is an ongoing work, but the existence of the solution has been
determined. We believe that the multiplayer reachability game can also be solved
to find the different kinds of equilibria. We hope to find the solution of this using
the strategy used in [2] for incentive equilibrium and [3] for leader equilibrium.
We also hope to build an implementation of the solution, which could take in an
input game and output strategy profiles which are NE, LE or IE.

References

1. R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2), 183-235, 1994.

2. Anshul Gupta , M. S. Krishna Deepak , Bharath Kumar Padarthi, Sven Schewe ,
and Ashutosh Trivedi. Incentive Equilibria in Mean-payoff Games LIPICS

3. Anshul Gupta and Sven Schewe. Quantitative Verification in Rational Environ-
ments. 21st International Symposium on Temporal Representation and Reasoning,
TIME 2014 , 123-131, 2014

4. Shankara Narayanan Krishna, Lakshmi Manasa, Ashish Chiplunkar. Nash Equi-
librium in Weighted Concurrent Timed Games with Reachability Objectives Dis-
tributed Computing and Internet Technology - 8th International Conference, ICD-
CIT 2012 , 117-128, 2012

5. T. Brihaye, V. Bruyère, and J. Raskin. Model-Checking for Weighted Timed Au-
tomata. Proceedings of FORMATS/FTRTFT’04, LNCS 3253, pp 277-292, 2004.

