Equilibria in Multiplayer Timed Games with Reachability Objectives

Shankara Narayanan Krishna, Samarth Mishra
Department of Computer Science and Engineering, IIT Bombay, Powai, Mumbai-76, India.
\{krishnas, samarth\}@cse.iitb.ac.in

Abstract

Timed automata [1] are a well accepted formalism in modelling real time systems. In this paper, we study sequential multiplayer games on timed automata with costs attached to the locations and edges and try to answer the question of the existence of Nash Equilibrium (NE), Leader Equilibrium (LE) (or Stackel Equilibrium) [3] and Incentive Equilibrium(IE) [2]. Considering memoryless strategies, we show that with three clocks it is undecidable whether there exists a $\mathrm{NE}(\mathrm{LE}$ or IE) where player 1, in a two-player game, has a cost bounded by a constant B.

1 Introduction

The concept of games on automata has been introduced with the central idea of multiple players making the automaton run in order to fulfil their interests. These games are classified into competitive and non-competitive games. In competitive games, one player wins the game while the others lose the game. In non-competetive games, there is no notion of winning or losing; each player plays the game in a way so that she gets a favourable outcome.

The games we consider in this paper are non-competetive, with 2 or more players on weighted timed automata. Costs are attached to the locations as well as edges. We show that 3 clocks are sufficient to obtain undecidability for the existence of NE (LE or IE). The definitions we use for Incentive Equilibrium and Leader Equilibrium are as mentioned in [2] and [3] respectively.

2 Preliminaries

2.1 Weighted Timed Automata (WTA)

We recall the definition of WTAs as in [5].
A weighted timed automaton is a tuple $\mathcal{A}=\left(L, L_{0}, X, Z, E, \eta, C\right)$ where L is a finite set of locations, $L_{0} \subseteq L$ is a set of initial locations, X is a finite set of clocks, Z is a finite set of costs (let $|Z|=m$), $E \subseteq L \times \mathcal{C}(X) \times U_{0}(X) \times L$ is the set of transitions. A transition $e=\left(l, \varphi, \phi, l^{\prime}\right) \in E$ is a transition from l to l^{\prime} with valuation $\nu \in \mathbb{T}^{X}$ satisfying the constraint φ, and ϕ gives the set of clocks to be
reset. $\eta: L \rightarrow \mathcal{C}(X)$ defines the invariants of each location. $C: L \cup E \rightarrow \mathbb{N}^{m}$ is the cost function which gives the rate of growth of each cost. Note that the costs are called stopwatches if $C: L \cup E \rightarrow\{0,1\}^{m}$. From the nature of the costs and stopwatches, it is clear that stopwatches are restricted costs. WTA with stopwatches form a subclass of WTA with costs.

The semantics of a WTA $\mathcal{A}=\left(L, L_{0}, X, Z, E, \eta, C\right)$ is given by a labelled timed transition system $\mathcal{T}_{\mathcal{A}}=(S, \rightarrow)$ where $S=L \times \mathbb{T}^{X} \times \mathbb{T}^{Z}$. We refer to an element $l \in L$ of a WTA \mathcal{A} as a location while we refer to an element $(l, \nu, \mu) \in S$ of $\mathcal{T}_{\mathcal{A}}$ as a state. The terms transition and edge are used interchangeably. \rightarrow is composed of transitions

- Time elapse t in l : A state (l, ν, μ) after time elapse t evolves to $\left(l^{\prime}, \nu^{\prime}, \mu^{\prime}\right)$, where $l^{\prime}=l, \nu^{\prime}=\nu+t, \mu^{\prime}=\mu+C(l) * t$ and for all $0 \leq t^{\prime} \leq t, \nu+t^{\prime} \models \eta(l)$.
- Location switch: $(l, \nu, \mu) \xrightarrow{(\varphi, \phi)}\left(l^{\prime}, \nu^{\prime}, \mu^{\prime}\right)$ if there exists $e=\left(l, \varphi, \phi, l^{\prime}\right) \in E$, such that $\nu \models \varphi, \nu^{\prime}=\nu[\phi:=0]$ and $\mu^{\prime}=\mu+C(e)$. Here, $\nu \models \eta(l), \nu^{\prime} \models \eta\left(l^{\prime}\right)$.

A path is a sequence of consecutive transitions in the transition system $\mathcal{T}_{\mathcal{A}}$. A path ρ starting at $\left(l_{0}, \nu_{0}^{\prime}, \mu_{0}^{\prime}\right)$ is denoted as $\rho=\left(l_{0}, \nu_{0}^{\prime}, \mu_{0}^{\prime}\right) \xrightarrow{t_{1}}\left(l_{0}, \nu_{1}, \mu_{1}\right) \xrightarrow{\left(\varphi_{1}, \phi_{1}\right)}$ $\left(l_{1}, \nu_{1}^{\prime}, \mu_{1}^{\prime}\right) \xrightarrow{t_{2}}\left(l_{1}, \nu_{2}, \mu_{2}\right) \xrightarrow{\left(\varphi_{2}, \phi_{2}\right)}\left(l_{2}, \nu_{2}^{\prime}, \mu_{2}^{\prime}\right) \cdots\left(l_{n}, \nu_{n}^{\prime}, \mu_{n}^{\prime}\right)$. Note that $\nu_{i}=\nu_{i-1}^{\prime}+$ $\left(t_{i}-t_{i-1}\right), \nu_{i} \models \varphi_{i}, \nu_{i}^{\prime}=\nu_{i}[\phi:=0]$ and $\mu_{i}=\mu_{i-1}^{\prime}+C\left(l_{i-1}\right) *\left(t_{i}-t_{i-1}\right)$, $\mu_{i}^{\prime}=\mu_{i}+C\left(l_{i-1}, \varphi_{i}, \phi_{i}, l_{i}\right)$.

2.2 Deterministic Two Counter Machines

A deterministic 2 -counter machine \mathcal{M} with counters c_{1} and c_{2} is described by a program formed by five basic instructions:
$-l_{m}$: goto l_{j};
$-l_{m}$: if $c_{i}=0$ then goto l_{j} else goto l_{k}; (check for zero)
$-l_{m}: c_{i}:=c_{i}+1$, goto $l_{j} ;\left(\right.$ increment counter $\left.c_{i}\right)$
$-l_{m}: c_{i}:=c_{i}-1$, goto l_{j}; (decrement counter c_{i}. A decrement instruction for c_{i} is always preceded by a check for zero for c_{i} so that \mathcal{M} does not get stuck)
$-l_{m}$: HALT;
Without loss of generality, assume that the instructions are labelled l_{1}, \ldots, l_{n} where $l_{n}=H A L T$ (a special instruction) and that to begin with, both counters have value zero. Let $L=\left\{l_{i} \mid 1 \leq i \leq n\right\}$ be the labels of the instructions in \mathcal{M}. A configuration of the two counter machine is a tuple $\left(l, n_{1}, n_{2}\right) \subseteq L \times \mathbb{N} \times \mathbb{N}$. A configuration tells us the current instruction of \mathcal{M} as well as the values of c_{1}, c_{2}. The behavior of the machine is described by a possibly infinite sequence of configurations $\left(l_{0}, 0,0\right),\left(l_{1}, C_{1}^{1}, C_{2}^{1}\right), \ldots\left(l_{k}, C_{1}^{k}, C_{2}^{k}\right) \ldots$ where C_{1}^{k} and C_{2}^{k} are the respective counter values and l_{k} is the label of the k th instruction. The halting problem of such a machine is known to be undecidable [?].

Let $V_{\mathcal{M}}=\left\{\left(c_{1}, c_{2}\right) \mid \exists l\right.$ such that \mathcal{M} visits $\left.\left(l, c_{1}, c_{2}\right)\right\}$ be the set of all pairs of values of counters c_{1}, c_{2} which result from \mathcal{M}. Two configurations (l, a, b) and $\left(l^{\prime}, a^{\prime}, b^{\prime}\right)$ are distinct if $l \neq l^{\prime}$ or $a \neq a^{\prime}$ or $b \neq b^{\prime}$. Clearly, $V_{\mathcal{M}}$ is finite iff \mathcal{M} visits finitely many distinct configurations.

3 Timed Multiplayer Reachability Game

The timed multiplayer reachability game structure is defined as a tuple $\mathcal{G}=$ $\left(L, L_{0}, X, Z, P, E, \eta, C, F\right)$ where, L is a finite set of locations, $L_{0} \subseteq L$ is the singleton set containing the initial location, F is a set of final or target locations and X is a finite set of clocks; Z is a set of n cost variables, where n is the number of players. P is the set of n players $\left\{P_{1}, P_{2} \ldots P_{n}\right\} ; E \subseteq L \times L \times \Theta(X) \times 2^{X}$ is the set of transitions, where $\Theta(X)$ is the set of all intervals for each of the clocks from which constraints on edge transitions are decided and 2^{X} corresponds to the set of clocks which are reset on taking that transition. $\eta: L \rightarrow \Theta(X)$ is a function assigning clock valuation invariants to each location; $C: L \rightarrow \mathbb{N}^{n}$ is a function associating cost growth rate to each of the players on the game locations. The game is then defined on the above structure as : The set of locations is partitioned into $L_{1}, L_{2}, \ldots L_{n}$ where L_{i} is the set of locations which belong to the player P_{i}. At each location, the owner of that location chooses an edge $e_{i} \in E$ and a time delay t_{i}. Suppose from a state $q=(l, \nu, \mu), l \in L_{i}$, player P_{i} chooses edge e_{i} and time delay t_{i}, then there exist states $q^{\prime}, q^{\prime \prime}$ such that $q=(l, \nu, \mu) \xrightarrow{t_{i}} q^{\prime}=$ $\left(l, \nu+t_{i}, \mu^{\prime}\right) \xrightarrow{e_{i}} q^{\prime \prime}=\left(l^{\prime \prime}, \nu^{\prime \prime}, \mu^{\prime \prime}\right)$. where the state transitions are as defined in Section 2.1, with a slight difference that as the edge $\xrightarrow{e_{i}}$ is taken, there is no further cost incurred for any of the players. Also note that here, $\nu \models \eta(l)$ and $\nu^{\prime \prime} \models \eta\left(l^{\prime \prime}\right)$ and $\nu+t_{i}$ satisfies the transition edge constraints on clock valuations.

A strategy for a player P_{i} is a function $\lambda_{i}: S \rightarrow\left(R^{+} \times E_{i}\right) \cup\{\infty\}$ (where S is the set of all possible values of $\left(l_{i}, \nu, \mu\right)$ where $\nu \models \eta\left(l_{i}\right)$ and $l_{i} \in \mathrm{E}_{i}$, close to the definition in Section 2.1), such that if $\lambda_{i}(q)=\left(t_{i}, e_{i}\right)$, then it possible to incur a delay of t_{i} at a state q, and then take a discrete transition e_{i}. Note that a delay t_{i} of ∞ is allowed if $\eta\left(l_{i}\right)$ allows it. A strategy profile is an n-tuple $\left(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\right)$ of strategies where λ_{i} is a strategy for player P_{i}. A run ρ is said to be played according to a strategy profile if for each node l_{i} that the game visits, the outgoing edge e_{i} and the time delay t_{i} are chosen according to λ_{i} (assuming $\left.l_{i} \in L_{i}\right) . \rho$ in the above case, is said to be the outcome of λ and is denoted as outcome (λ). We also define the final accumulated costs for each of the players, as a function of the run, such that $u_{i}(\rho)$ is the final accumulated cost for player P_{i}. An n-tuple of all these costs for a given run, $u(\rho)=\left(u_{1}(\rho), u_{2}(\rho) \ldots u_{n}(\rho)\right)$. The strategies we consider are memoryless, since we only look at the current state to decide the next move. A terminal history is a run ρ starting from the initial location, ending in a target location and never passing through a target location in between. Given a terminal history ρ, the payoff of player i is $-u_{i}(\rho)$ where $u_{i}(\rho)$ is the cost accumulated along ρ. For a run ρ that does not end in a target location, the payoff for both players is ∞. The objective of each player is to reach a target location accumulating as small a cost as possible. Our games are therefore non-competetive, since neither player aims to increase the others' cost.

4 Examples

In the example figure 4.1 , nodes 1,4 and 8 belong to player 1 , node 2 belongs to player 2, node 3 belongs to player 3, and the remaining are target nodes. Note that the owner of the target nodes do not matter because there are no moves left after reaching one of those locations. In the example given, location i has been represented as l_{i} and the edge between locations l_{i} and l_{j} as $e_{i j}$. Note that in the examples below, the strategy we've mentioned is independent of the initial clock valuations when the node is arrived at (because the clock is being reset after each edge). Also, the strategy mentioned is independent of the cost accumulated by each of the players. Hence, in the examples given below, we change our notation for strategy λ slightly and is now represented as $\lambda(l)$ instead of $\lambda(l, \nu, \mu)$.

Fig. 4.1. A multiplayer timed reachability game

4.1 Nash Equilibrium

The strategy profile $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is a Nash Equilibrium, where $\lambda_{1}\left(l_{1}\right)=$ $\left(1, e_{16}\right)$, and λ_{2} and λ_{3} can be any strategies. Note that λ_{2} and λ_{3} need not be defined in the above strategy profile, given λ_{1}, because the game wouldn't progress to a point where the location belongs to Player 2 or 3. It can be seen that Player 1 can't unilaterally deviate from this strategy to (strictly) decrease his total cost incurred. In the above example, $u($ outcome $(\lambda))=(2,3,3)$.

4.2 Leader Equilibrium

In the example under consideration, player 2 is the leader. The following strategy profile is a leader equilibrium : $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, where $\lambda_{1}\left(l_{1}\right)=\left(1, e_{12}\right), \lambda_{2}\left(l_{2}\right)=$ $\left(2, e_{27}\right)$ and λ_{3} need not be defined due to reasons similar to that mentioned in the previous section, i. e., section 4.1.

It can be seen that the above strategy profile is a leader strategy profile because player 1 can't strictly benefit by unilaterally deviating. Also, this is the best cost for player 2 among all leader strategy profiles, and hence is a leader equilibrium.

4.3 Incentive Equilibrium

In an incentive strategy profile, the leader can provide an incentive to each of the other players by offering to take some cost from the player if he/she chooses some edge as suggested by the leader. Here, the strategy profile λ, also consists of a function $\iota:\left\{P_{1} \ldots P_{n}\right\}-\left\{P_{l}\right\} \rightarrow \mathbb{R}_{\geq 0}$, where P_{l} is the leader and $\iota\left(P_{i}\right)$ gives the incentive given to (or cost taken from) P_{i} in that strategy profile.

An incentive strategy profile which corresponds to an incentive equilibrium in our example game graph is: $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \iota\right)$, where $\lambda_{1}\left(l_{1}\right)=\left(0, e_{12}\right), \lambda_{1}\left(l_{8}\right)=$ $\left(1, e_{89}\right), \lambda_{1}\left(l_{2}\right)=\left(1, e_{23}\right), \lambda_{3}\left(l_{3}\right)=\left(2, e_{38}\right), \iota\left(P_{1}\right)=1, \iota\left(P_{3}\right)=1$. It can be seen that the above strategy profile is an incentive equilibrium and $u(\operatorname{outcome}(\lambda))=$ $(2,6,4)$.

5 Existence of Nash Equilibrium

In this section, we show that the existence of a NE such that player P_{1} has a payoff bounded by a constant B is undecidable. First, we show that the following question regarding two counter machines is undecidable, and then use it to prove our result. The proof for theorem 1 has been re-written exactly as has been given in [4].

Q1: Given a two counter machine \mathcal{M}, is it decidable whether, starting from a configuration $\left(q_{0}, 0,0\right), \mathcal{M}$ will visit finitely many distinct configurations?

Proposition 1. Question Q1 is undecidable.
Proof. The halting problem for two counter machines is known to be undecidable. We show a reduction of the halting problem to the problem in question Q1. Assume that there is an algorithm $\mathcal{A}_{\mathcal{M}}$ to detect whether \mathcal{M} visits finitely many distinct configurations starting from ($q_{0}, 0,0$).

- If \mathcal{M} indeed visits only finitely many distinct configurations, then we simulate \mathcal{M} starting from the initial configuration, maintaining a list of visited configurations until it halts, or it revisits a previously visited configuration. In the latter case, we conclude that \mathcal{M} does not halt. Note that since \mathcal{M} visits only finitely many configurations, one of the above outcomes is bound to happen.
- If \mathcal{M} visits infinitely many distinct configurations, then we conclude that it does not halt.

Thus, $\mathcal{A}_{\mathcal{M}}$ yields a solution to the halting problem of \mathcal{M}. Since we know that this is not possible, the question of whether \mathcal{M} visits finitely many distinct configurations starting from a configuration $\left(q_{0}, 0,0\right)$ is undecidable.

Theorem 1. Given a timed 2-player reachability game structure \mathcal{G} with three clocks and stopwatch costs, it is undecidable if there exists an $N E\left(\lambda_{1}, \lambda_{2}\right)$ for the corresponding game, in the outcome of which P_{1} incurs a cost bounded by a constant B; that is, $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}\right)\right)<B$.

Proof. We construct a timed game structure \mathcal{G} with 3 clocks x_{1}, x_{2}, x_{3} that simulates a two counter machine \mathcal{M}. The clocks x_{1}, x_{2}, x_{3} encode the counter values c_{1}, c_{2} as follows: At the end of each module in \mathcal{G},

$$
\nu\left(x_{1}\right)=\frac{1}{2^{c_{1} 3^{c_{2}}}}, \nu\left(x_{2}\right)=0 .
$$

The clock x_{3} is used to do calculations and is used for rough work. We show that \mathcal{G} has an $\operatorname{NE}\left(\lambda_{1}, \lambda_{2}\right)$ such that $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}\right)\right)<6$ iff \mathcal{M} visits only finitely many distinct configurations.

Construction of \mathcal{G}

In all locations of \mathcal{G}, we add a loop with constraint $x_{i}=1, i \in\{1,2,3\}$ and reset it when x_{i} reaches 1 . For convenience, we will not draw this in any of the locations in the various modules. We would also omit this loop from the player strategy when mentioned. The loop is as depicted below. This loop ensures that the values of x_{1}, x_{2} are always related to each other in one of the following ways:

$$
\begin{aligned}
& \nu\left(x_{1}\right)-\nu\left(x_{2}\right)=\frac{1}{2^{c_{1}} 3^{c_{2}}}, 0 \leq x_{2} \leq x_{1} \leq 1 \text {, or } \\
& \nu\left(x_{2}\right)-\nu\left(x_{1}\right)=1-\frac{2^{c_{1}} 3^{c_{2}}}{}, 0 \leq x_{1} \leq x_{2} \leq 1 .
\end{aligned}
$$

Fig. 5.1. Loop on all locations to ensure that $0 \leq x_{i} \leq 1$ for $i \in\{1,2,3\}$
\mathcal{G} is constructed by connecting the modules simulating the various increment, decrement and zero check instructions according to \mathcal{M}. For example, if \mathcal{M} contains the instructions l_{1} : Increment c_{1}, goto l_{2}, l_{2} : if $c_{1}>0$, goto l_{3}, else HALT, and l_{3} : decrement c_{1}, goto l_{1}, then \mathcal{G} is obtained by connecting the modules for incrementing c_{1}, checking if c_{1} is zero, then decrementing c_{1} in a round robin fashion. We describe below, the modules for increment, decrement as well as zero check. In each of the modules, a rectangular node represents a location
belonging to player P_{2}, and the oval node represents a a player P_{1} node. In the following text, we will use "player 1 " and "player P_{1} " interchangeably. For ease of notation, we have used in the locations costs $\in \mathbb{N}$ instead of just 0 and 1 . It must be noted that a location which uses a cost other than 0 and 1 can be replaced with a sequence of locations, each of which have costs over $\{0,1\}^{2}$. We have illustrated this in the case of Figure 5.3. This can be done for all the figures we have drawn.

Simulation of an increment instruction l_{i} : increment c_{1}, goto l_{j} :

Fig. 5.2. Module for incrementing c_{1}

Figure 5.2 is the module for incrementing c_{1}. On entry into this module, the values of clocks x_{2}, x_{3} is 0 . If the first instruction of \mathcal{M} is an increment instruction, then on entry, $\nu\left(x_{1}\right)=\nu\left(x_{2}\right)=\nu\left(x_{3}\right)=0$. Note that in the beginning $c_{1}=c_{2}=0$, so that $\nu\left(x_{2}\right)-\nu\left(x_{1}\right)=1-\frac{1}{2^{c_{1} 3^{c_{2}}}}$.

Assume that the clock valuations of x_{1}, x_{2}, x_{3} on entry is given by the tuple $\left(x_{o l d}, 0,0\right)$ where $x_{\text {old }}$ is of the form $\frac{1}{2^{c_{13} 3^{c}}}$. On leaving $l_{i}, x_{1}=0, x_{2}=x_{3}=$ $1-x_{\text {old }}$. A non-deterministic amount of time $x_{\text {new }}$ is spent in the next location. On coming out of this location, x_{3} is reset to zero, so that $x_{1}=x_{n e w}, x_{2}=$ $1-x_{\text {old }}+x_{\text {new }}$ or $x_{\text {new }}-x_{\text {old }}$ and $x_{3}=0$ (Note that if $x_{\text {new }}<x_{\text {old }}$, then $x_{2}=1-x_{\text {old }}+x_{\text {new }}$ and if $x_{\text {new }}>x_{\text {old }}$, then $x_{2}=x_{\text {new }}-x_{\text {old }}$ due to the self loop on all locations). If $x_{\text {new }}=x_{\text {old }}$, then $x_{2}=0$ (note that when $x_{2}=1$, the self loop resets x_{2} to zero). No time delay can happen at location M or M_{1} due to the invariant $x_{3}=0$. Player 1 , at M_{1}, has two choices of going to the Abort widget or continuing with the simulation of \mathcal{M}, while player 2 , at M, can check whether $x_{\text {new }}$ is indeed $\frac{x_{\text {old }}}{2}$ by going to the widgets $W I_{<}^{2}$ or $W I_{>}^{2}$. We now consider the three cases when $x_{\text {new }}=\frac{x_{\text {old }}}{2}, x_{\text {new }}>\frac{x_{\text {old }}}{2}$ and $x_{\text {new }}<\frac{x_{\text {old }}}{2}$.

Let us look at the widgets $W I_{<}^{2}$ and $W I_{>}^{2}$ with respect to this. We explain in detail the widget $W I_{<}^{2}$. On entry into $W I_{<}^{2}, x_{1}=x_{\text {new }}, x_{2}=1-x_{\text {old }}+x_{\text {new }}$ (or $x_{2}=x_{\text {new }}-x_{\text {old }}$). We walk through the locations of $W I_{<}^{2}$ and list down the values of the clocks as well as the costs incurred by the players. Note that till the entry into widgets $W I_{<}^{2}, W I_{>}^{2}$ and Abort, no cost is incurred by either player.

As given by Table 1, the costs incurred by P_{1} and P_{2} at the end of the widget $W I_{<}^{2}$ are respectively $3\left(x_{\text {old }}-2 x_{\text {new }}+2\right)$ and $3\left(2 x_{\text {new }}-x_{\text {old }}+2\right)$. If $x_{\text {new }}=\frac{x_{\text {old }}}{2}$, then the costs are both 6 , while if $x_{\text {new }}<\frac{x_{\text {old }}}{2}$ then P_{1} incurs a cost >6 while P_{2} incurs a cost <6. If $x_{\text {new }}>\frac{x_{\text {old }}}{2}$, then the cost incurred by P_{1} is <6 while that

Location of $W I_{<}^{2}$	$\nu\left(x_{1}\right)$ on entry	$\nu\left(x_{2}\right)$ on entry	$\nu\left(x_{3}\right)$ on entry	Accumulated cost of P_{1} on entry	Accumulated cost of P_{2} on entry
Initial	$x_{\text {new }}$	$1-x_{\text {old }}+x_{\text {new }}$ or $x_{\text {new }}-x_{\text {old }}$	0	0	0
2	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	0	0
3	$x_{\text {old }}$	0	$1-x_{\text {new }}+x_{\text {old }}$	$3 x_{\text {old }}$	0
4	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	$3 x_{\text {old }}$	$3\left(1-x_{\text {old }}\right)$
5	$x_{\text {new }}$	$1-\left(x_{\text {old }}-x_{\text {new }}\right)$	0	$3 x_{\text {old }}$	$3\left(1-x_{\text {old }}\right)+6 x_{\text {new }}$
6	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	$3 x_{\text {old }}+6\left(1-x_{\text {new }}\right)$	$3\left(1-x_{\text {old }}\right)+6 x_{n e w}$
7	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	$3 x_{\text {old }}+6\left(1-x_{\text {new }}\right)$	$3\left(1-x_{\text {old }}\right)+6 x_{\text {new }}+3$

Table 1. Clock valuations and costs incurred in $W I_{<}^{2}$
of P_{2} is >6. The widget $W I_{>}^{2}$ is obtained by switching the costs in all locations of $W I_{<}^{2}$.

The costs incurred by P_{1}, P_{2} at the end of $W I_{>}^{2}$ are respectively $3\left(2 x_{\text {new }}-\right.$ $\left.x_{\text {old }}+2\right)$ and $3\left(x_{\text {old }}-2 x_{\text {new }}+2\right)$. The widgets $W I_{<}^{2}, W I_{>}^{2}$ respectively are player 2 's opportunities to catch player 1 when $x_{\text {new }}<\frac{x_{\text {old }}}{2}$ and $x_{\text {new }}>\frac{x_{\text {old }}}{2}$. Note that if $x_{\text {new }}<\frac{x_{\text {old }}}{2}$, then P_{2} can move into $W I_{<}^{2}$, by a strategy $\lambda_{2}\left(M,\left(x_{\text {new }}, 1-x_{\text {old }}+\right.\right.$ $\left.\left.x_{\text {new }}, 0\right),(0,0)\right)=\left(0, e_{1}\right)$ and can move into $W I_{>}^{2}$ by a strategy $\lambda_{2}\left(M,\left(x_{\text {new }}, 1-\right.\right.$ $\left.\left.x_{\text {old }}+x_{\text {new }}, 0\right),(0,0)\right)=\left(0, e_{2}\right)$ if $x_{\text {new }}>\frac{x_{\text {old }}}{2}$.
Note that for incrementing c_{2}, widgets $W I_{<}^{3}$ and $W I_{>}^{3}$ can be constructed which will check if $x_{\text {new }}=\frac{x_{\text {old }}}{3}$.
Simulation of a decrement instruction l_{i} : decrement c_{1}, goto l_{j} :
Since we have assumed that a decrement instruction is preceded by a zero check instruction, the above module starts with $x_{1}=\frac{1}{2^{c_{1} 3^{c_{2}}}}$ and ends with $x_{1}=\frac{1}{2^{c_{1}-1} 3^{c_{2}}}$, with $c_{1}-1 \geq 0$. This is similar to the module in Figure 5.2. On entry, $x_{1}=x_{\text {old }}$, where $x_{\text {old }}$ is of the form $\frac{1}{2^{c_{13} c_{2}}}, c_{1}>0$ and $x_{2}=x_{3}=$ 0 . A non-deterministic amount of time $x_{\text {new }}$ is spent in the second location in Figure 5.5. Player 2 can check if $x_{\text {new }}=2 x_{\text {old }}$ by entering either of the widgets $W D_{<}^{2}$ or $W D_{>}^{2} . W D_{<}^{2}, W D_{>}^{2}$ respectively are player 2's chances to catch player 1 respectively when $x_{\text {new }}<2 x_{\text {old }}$ and $x_{\text {new }}>2 x_{\text {old }}$ by choosing strategies $\lambda_{2}\left(N,\left(x_{\text {new }}, x_{\text {new }}-x_{\text {old }}, 0\right),(0,0)\right)=\left(0, e_{1}^{\prime}\right)$ if $x_{\text {new }}<2 x_{\text {old }}$ and $\lambda_{2}\left(N,\left(x_{\text {new }}, x_{\text {new }}-x_{\text {old }}, 0\right),(0,0)\right)=\left(0, e_{2}^{\prime}\right)$ if $x_{\text {new }}>2 x_{\text {old }}$. In these cases, player 1 incurs a cost >6, while if $x_{\text {new }}=2 x_{\text {old }}$, the cost is exactly 6 . Table 2 runs us through the clock valuations and accumulated costs incurred by the players in $W D_{>}^{2}$. Note that till the time a widget is entered, no cost is incurred by either player. The widget $W D_{<}^{2}$ is obtained by switching the costs in all locations of $W D_{>}^{2}$.

Fig. 5.4. The location A in Figure 5.3 can be replaced by the path consisting of the locations $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}$. The cost accumulated between A_{0} and B is $\left(3 x_{\text {old }}, 0\right)$ which is the same as the cost accumulated between A and B. This can be done for all locations with costs (i, j) where i or $j \notin\{0,1\}$ in a way that the accumulated costs are same.

Fig. 5.5. Module for decrementing c_{1}

The costs incurred by P_{1}, P_{2} respectively at the end of the widget $W D_{>}^{2}$ are $3\left(x_{\text {new }}-2 x_{\text {old }}+2\right)$ and $3\left(2 x_{\text {old }}-x_{\text {new }}+2\right)$. Clearly, if $x_{\text {new }}>2 x_{\text {old }}, P_{1}$ incurs a cost >6, while P_{2} incurs a cost >6 when $x_{\text {new }}<2 x_{\text {old }}$. The widget $W D_{<}^{2}$ is similar and is given below. The costs incurred by P_{1}, P_{2} at the end of this widget respectively are $3\left(2 x_{\text {old }}-x_{\text {new }}+2\right)$ and $3\left(x_{\text {new }}-2 x_{\text {old }}+2\right)$.

Note that for decrementing c_{2}, widgets $W D_{<}^{3}$ and $W D_{>}^{3}$ can be constructed which will check if $x_{\text {new }}=3 x_{\text {old }}$.

Simulation zero check l_{i} : if $c_{2}=0$, goto l_{j}, else goto l_{k} :

Figure 5.7 is the module for simulating the instruction for zero check of c_{2}. The invariant $x_{3}=0$ enforces no time be spent at locations l_{i}, Z and $N Z$. Player 1 can non-deterministically choose to goto Z or $N Z$. In a correct simulation, player 1 must goto Z when $c_{2}=0$ and to $N Z$ when $c_{2} \neq 0$. Otherwise, player 2 can move into widgets Check $c_{2}=0$ and Check $c_{2}>0$. We now explain the functionality of the widgets Check $c_{2}=0$ and Check $c_{2}>0$. Check $c_{2}=0$ is the widget for ensuring that c_{2} is zero, while the widget Check $c_{2}>0$ ensures that c_{2} is non-zero. The locations J, K, L in the widget Check $c_{2}=0$ form a loop that repeatedly multiplies x_{1} by 2 until x_{1} becomes 1 . Note that this is possible only if $c_{2}=0$. The widgets $W D_{<}^{2}$ and $W D_{>}^{2}$ can be invoked by player 2 to check that this multiplication goes on correctly in each round (that is, $x_{\text {new }}=2 x_{\text {old }}$). The location $T 1$ in widget Check $c_{2}=0$ can be reached only when x_{1} becomes 1 , which is possible only if $c_{2}=0$. Check $c_{2}>0$ is similar to Check $c_{2}=0$. The upper loop $C D E$ repeatedly multiplies x_{1} by 2 , while the lower loop $C D G$ multiplies x_{1} by 3 . This continues till $x_{1}=\frac{1}{3}$. The location $T 2$ can be reached

Fig. 5.6. Widget $W D_{>}^{2}$

Location of $W D_{>}^{2}$	$\nu\left(x_{1}\right)$ on entry	$\nu\left(x_{2}\right)$ on entry	$\nu\left(x_{3}\right)$ on entry	Accumulated cost of P_{1} on entry	Accumulated cost of P_{2} on entry
Initial	$x_{\text {new }}$	$1-x_{\text {old }}+x_{\text {new }}$ or $x_{\text {new }}-x_{\text {old }}$	0	0	0
2	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	0	$3\left(1-x_{\text {new }}\right)$
3	$x_{\text {new }}$	$x_{\text {new }}-x_{\text {old }}$	0	$3 x_{\text {new }}$	$3\left(1-x_{\text {new }}\right)$
4	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	$3 x_{\text {new }}$	$3\left(1-x_{\text {new }}\right)$
5	$x_{\text {old }}$	0	$1-\left(x_{\text {new }}-x_{\text {old }}\right)$	$3 x_{\text {new }}$	$3\left(1-x_{\text {new }}\right)+6 x_{\text {old }}$
6	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	$3 x_{\text {new }}+6\left(1-x_{\text {old }}\right)$	$3\left(1-x_{\text {new }}\right)+6 x_{\text {old }}$
7	0	$1-x_{\text {old }}$	$1-x_{\text {new }}$	$3 x_{\text {new }}+6\left(1-x_{\text {old }}\right)$	$3\left(1-x_{\text {new }}\right)+6 x_{\text {old }}+3$

Table 2. Clock valuations and costs incurred in $W D_{>}^{2}$
only in this case, which can happen only when $c_{2}>0$. Player 2 can invoke the widgets $W D_{>}^{2}$ or $W D_{<}^{2}$ as part of the upper loop to check if multiplication by 2 is happening correctly and widgets $W D_{>}^{3}$ or $W D_{<}^{3}$ with respect to the lower loop to check if multiplication by 3 is happening correctly

Note that if player 1 enters $Z(N Z)$ when $c_{2}>0\left(c_{2}=0\right)$, then the locations $T 1, T 2$ in the widgets Check $c_{2}=0$ and Check $c_{2}>0$ can never be reached. Further, if player 1 enters Z when $c_{2}>0$, the transition from J to K cannot be taken. Likewise, if $N Z$ is entered when $c_{2}=0$, the transition from C to D cannot be taken. The only way then to reach a target location in widgets Check $c_{2}=0$ and Check $c_{2}>0$ is when player 2 forces a move into one of the widgets $W D_{>}^{i}$ or $W D_{<}^{i}(i \in\{2,3\})$. This can make player 1 incur a cost ≥ 6. If the simulation is correct and player 1 enters $Z(N Z)$ diligently (by having a strategy $\lambda_{1}\left(l_{i},\left(x_{\text {old }}, 0,0\right),(0,0)\right)=\left(0, e_{z}\right)$ if $x_{o l d}$ is of the form $\frac{1}{2^{m}}$ and $\lambda_{1}\left(l_{i},\left(x_{\text {old }}, 0,0\right),(0,0)\right)=\left(0, e_{n z}\right)$ if $x_{\text {old }}$ is of the form $\left.\frac{1}{2^{m} 3^{n}}, n>0\right)$, then $l_{j}\left(l_{k}\right)$ is reached).

Player 1 can enter the widget Abort after the simulation of any instruction. On entering this module, c_{2} is decremented and c_{1} is incremented until c_{2} becomes zero. This is followed by incrementing c_{1} once more, so that starting with $x_{1}=\frac{1}{2^{c_{1} 3^{c_{2}}}}, x_{2}=x_{3}=0$ in Abort, we obtain $x_{1}=\frac{1}{2^{c_{1}+c_{2}+1}}, x_{2}=x_{3}=0$ at location H. The costs incurred by P_{1} and P_{2} if all increment and decrement instructions are executed correctly on reaching location F in Abort are $5+\frac{1}{2^{c_{1}+c_{2}+1}}$ and 6 respectively. We will use this in the proof below.

Fig. 5.7. Zero Check for c_{2}

Fig. 5.8. Check $c_{2}=0$

Existence of bounded NE in $\mathcal{G} \Leftrightarrow$ finiteness of $V_{\mathcal{M}}$

Having finished the details on the construction of \mathcal{G}, we now prove that
\mathcal{M} visits finitely many distinct configurations iff there exists a NE in the outcome of which player 1 has a cost bounded above by 6 .

1. Assume that \mathcal{M} visits finitely many distinct configurations. Then the number of distinct pairs of values $\left(c_{1}, c_{2}\right)$ is finite. Recall from Section 2.2 that $V_{\mathcal{M}}=\left\{\left(c_{1}, c_{2}\right) \mid \exists q\right.$ such that \mathcal{M} visits $\left.\left(q, c_{1}, c_{2}\right)\right\}$, the set of all pairs of values of counters c_{1}, c_{2} which result from \mathcal{M}. Clearly, $V_{\mathcal{M}}$ is finite iff \mathcal{M} visits finitely many distinct configurations. If \mathcal{M} visits finitely many distinct configurations, let $c^{\max }=\max \left\{c_{1}+c_{2} \mid\left(c_{1}, c_{2}\right) \in V_{\mathcal{M}}\right\}$.
Consider the strategy profile $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ given as follows:

- λ_{1}^{*} is the strategy for P_{1} which suggests it to correctly simulate \mathcal{M} until the counters attain values summing up to $c^{\max }$, and then to enter the widget Abort. In Abort, correctly simulate widgets Increment c_{1} and Decrement c_{2} until $c_{2}=0$.
- λ_{2}^{*} is the strategy for P_{2} which suggests it to enter any of the widgets $W D_{<}^{2}, W D_{<}^{3}, W D_{>}^{2}, W D_{>}^{3}, W I_{>}^{2}, W I_{>}^{3}, W I_{<}^{2}, W I_{<}^{3}$, Check $c_{2}=0$, Check $c_{2}>0$, Check $c_{1}=0$ or Check $c_{1}>0$ when P_{1} makes a simulation error. Precisely, λ_{2}^{*} is the strategy for P_{2} such that it enters $W I_{>}^{2}\left(W I_{<}^{2}\right)$ when $x_{\text {new }}>\frac{x_{\text {old }}}{2}\left(x_{\text {new }}<\frac{x_{\text {old }}}{2}\right), W I_{>}^{3}\left(W I_{<}^{3}\right)$ when $x_{\text {new }}>$ $\frac{x_{\text {old }}}{3}\left(x_{\text {new }}<\frac{x_{\text {old }}}{3}\right), W D_{>}^{2}\left(W D_{<}^{2}\right)$ when $x_{\text {new }}>2 x_{\text {old }}\left(x_{\text {new }}<2 x_{\text {old }}\right)$, and $W_{>}^{3}\left(W D_{<}^{3}\right)$ when $x_{\text {new }}>3 x_{\text {old }}\left(x_{\text {new }}<3 x_{\text {old }}\right)$.
The outcome of $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ is a run in which instructions of \mathcal{M} are simulated correctly until counter values sum up to $c^{\max }$, followed by the widget Abort. P_{2} does not execute any transitions in this run. Hence,

$$
u_{1}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)=5+\frac{1}{2^{\operatorname{cmax}+1}}, u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)=6
$$

Fig. 5.9. Check $c_{2}>0$

Fig. 5.10. Abort

We prove that $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ is a NE. Clearly, the cost incurred by P_{1} in this strategy profile is <6. To prove that $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ is an NE, we have to show that

- For any strategy λ_{1} of P_{1} such that $\lambda_{1} \neq \lambda_{1}^{*}, u_{1}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right) \leq$ $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)$, and
- For any strategy λ_{2} of P_{2} such that $\lambda_{2} \neq \lambda_{2}^{*}, u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right) \leq$ $u_{2}\left(\right.$ outcome $\left.\left(\lambda_{1}^{*}, \lambda_{2}\right)\right)$.
Note that the game reaches a target location only if one of the widgets $W D_{<}^{2}$, $W D_{<}^{3}, W D_{>}^{2}, W D_{>}^{3}, W I_{>}^{2}, W I_{>}^{3}, W I_{<}^{2}, W I_{<}^{3}$, Check $c_{2}=0$, Check $c_{2}>0$, Check $c_{1}=0$, Check $c_{1}>0$ or Abort is invoked.
(a) Assume that $u_{1}\left(\operatorname{outcome}\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)<u_{1}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)$. That means, $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)<5+\frac{1}{2^{c^{m u x}+1}}$. Since $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)$ is bounded above by a finite value, it must be that the outcome of $\left(\lambda_{1}, \lambda_{2}^{*}\right)$ is a run ending in a target location. We consider various cases for this target.
i. Assume the target location is in $W I_{>}^{2}$. Since λ_{2}^{*} is such that it enters $W I_{>}^{2}$ when P_{1} has committed a simulation error, P_{2} will enter $W I_{>}^{2}$ on a clock valuation $\left(x_{\text {new }}, 1-x_{\text {old }}+x_{\text {new }}, 0\right)$ such that $x_{\text {new }}>\frac{x_{\text {old }}}{2}$. Then the cost incurred by P_{1} is $u_{1}\left(\operatorname{outcome}\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)>6>5+$ $\frac{1}{2^{c^{m a x}+1}}$, which is a contradiction to our assumption.
ii. Assume the target location is in $W I_{<}^{2}$. Again, since λ_{2}^{*} is such that it enters $W I_{<}^{2}$ when P_{1} has committed a simulation error, P_{2} will enter $W I_{<}^{2}$ on a clock valuation $\left(x_{\text {new }}, 1-x_{\text {old }}+x_{\text {new }}, 0\right)$ such that $x_{\text {new }}<\frac{x_{\text {old }}}{2}$. Then the cost incurred by P_{1} is $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)>$ $6>5+\frac{2}{2^{c^{m u x}+1}}$, which is a contradiction to our assumption.
iii. Assume the target location is in $W D_{>}^{2} . \lambda_{2}^{*}$ is such that it enters $W D_{>}^{2}$ from a clock valuation $\left(x_{\text {new }}, 1-x_{\text {old }}+x_{\text {new }}, 0\right)$ such that $x_{\text {new }}>2 x_{\text {old }}$, the cost incurred by P_{1} is $u_{1}\left(\operatorname{outcome}\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)>6>$ $5+\frac{1}{2^{c^{m a x}}+1}$, which is a contradiction to our assumption.
iv. The cases of $W D_{<}^{2}, W D_{>}^{3}, W D_{<}^{3}, W I_{<}^{3}$ and $W I_{>}^{3}$ are similar.
v. The location is in Check $c_{2}=0$ or Check $c_{2}>0$. In this case, the target location must be in one of $W D_{>}^{2}, W D_{<}^{2}, W D_{>}^{3}, W D_{<}^{3}, W I_{<}^{2}$, $W I_{>}^{2}, W I_{<}^{3}$ or $W I_{>}^{3}$. The cases considered above apply.
vi. The target location is F in the widget Abort. Since $\lambda_{1} \neq \lambda_{1}^{*}, P_{1}$ must have entered Abort before $c^{\max }$ is attained as the sum of the counter values (of course, P_{1} simulates all the way correctly till it enters Abort and in Abort; if not, then the earlier cases apply). Then, $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)=5+\frac{1}{2^{c_{1}+c_{2}+1}}$ where $c_{1}+c_{2}<c^{\text {max }}$. Then $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)>5+\frac{1}{2^{c^{m a x}+1}}$, contradicting our assumption.
Thus, in all cases, we have $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right) \leq u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{*}\right)\right)$ for all strategies $\lambda_{1} \neq \lambda_{1}^{*}$.
(b) Assume that $u_{2}\left(\right.$ outcome $\left.\left(\lambda_{1}^{*}, \lambda_{2}\right)\right)<u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)$. That means, $u_{2}\left(\right.$ outcome $\left.\left(\lambda_{1}^{*}, \lambda_{2}\right)\right)<6$. Since $u_{2}\left(\right.$ outcome $\left.\left(\lambda_{1}^{*}, \lambda_{2}\right)\right)$ is bounded above by a finite value, it must be that the outcome of $\left(\lambda_{1}^{*}, \lambda_{2}\right)$ is a run ending in a target location. We consider various cases for this target. The target location cannot be F in Abort, since P_{2} incurs a cost 6 in this widget.
i. The target location is in $W D_{<}^{2}$. Since λ_{1}^{*} suggests to P_{1} to correctly simulate instructions till $c^{\max }$ is attained and also inside Abort, $W D_{<}^{2}$ must have been entered from a valuation $\left(x_{\text {new }}, 1-x_{\text {old }}+\right.$ $\left.x_{\text {new }}, 0\right)$ such that $x_{\text {old }}=2 x_{\text {new }}$. In this case, P_{2} incurs a cost 6 , which means u_{2} (outcome $\left.\left(\lambda_{1}^{*}, \lambda_{2}\right)\right)=6$ contradicting the assumption.
ii. The target location is in $W D_{>}^{2}$ or $W D_{<}^{3}$ or $W D_{>}^{3}$ or $W I_{<}^{3}$ or $W I_{>}^{3}$ or $W I_{<}^{2}$ or $W I_{>}^{2}$. In all these cases, by choice of λ_{1}^{*}, P_{1} correctly simulates the instructions and hence P_{2} incurs a cost of 6 , which contradicts the assumption.
Therefore, $u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right) \leq u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}\right)\right)$ for all strategies $\lambda_{2} \neq \lambda_{2}^{*}$.

2. Assume that \mathcal{M} visits infinitely many distinct configurations. That is, $V_{\mathcal{M}}$ is infinite. Assume further that there exists a NE $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ in the outcome of which P_{1} incurs a cost bounded above by 6 ; that is, $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)<$ 6 . The cost being bounded, the run which is in the outcome of $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ must end in a target location. We do a case analysis on the various target locations and in each case, prove that $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ cannot be a NE such that $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)<6$.
(a) The run ends in a target location of $W I_{>}^{2}$. The cost incurred by P_{1} is $3\left(2 x_{\text {new }}-x_{\text {old }}+2\right)$ which by assumption is <6. Then, $2 x_{\text {new }}<x_{\text {old }}$.

This implies that the cost incurred by P_{2} is $3\left(x_{\text {old }}-2 x_{\text {new }}+2\right)>6$. Now consider a strategy λ_{2} for $P_{2}\left(\lambda_{2} \neq \lambda_{2}^{\prime}\right)$ which suggests that P_{2} enter $W I_{<}^{2}$ instead of $W I_{>}^{2}$. Then the cost incurred by P_{2} is $3\left(2 x_{\text {new }}-x_{\text {old }}+2\right)$ which is <6 by the condition $2 x_{\text {new }}<x_{\text {old }}$. Then, $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}\right)\right)<$ u_{1} (outcome $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$) which means that $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ is not an NE.
(b) The run ends in a target location of $W I_{<}^{2}$. The cost incurred by P_{1} is $3\left(x_{\text {old }}-2 x_{\text {new }}+2\right)$ which by assumption is <6. Then, $x_{\text {old }}<2 x_{\text {new }}$. This implies that the cost incurred by P_{2} is $3\left(2 x_{\text {new }}-x_{\text {old }}+2\right)>6$. Now consider a strategy λ_{2} for $P_{2}\left(\lambda_{2} \neq \lambda_{2}^{\prime}\right)$ which suggests that P_{2} enter $W I_{>}^{2}$ instead of $W I_{<}^{2}$. Then the cost incurred by P_{2} is $3\left(x_{\text {old }}-2 x_{\text {new }}+2\right)$ which is <6 by the condition $x_{\text {old }}<2 x_{\text {new }}$. Then, u_{1} (outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}\right)\right)<$ u_{1} (outcome $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$) which means that $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ is not an NE.
(c) The cases of $W I_{<}^{3}$ and $W I_{>}^{3}, W D_{<}^{2}, W D_{>}^{2}, W D_{<}^{3}$ and $W D_{>}^{3}$ are similar.
(d) The target location is F in Abort. Then we know that $u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)$ $=6$.
i. Assume that λ_{1}^{\prime} is a strategy by which P_{1} does not execute all instructions of \mathcal{M} correctly. Let λ_{2} be a strategy which asks P_{2} to enter a widget $\left(W I_{<}^{2}, W I_{>}^{2}, W I_{<}^{3}, W I_{>}^{3}, W D_{<}^{2}, W D_{>}^{2}, W D_{<}^{3}\right.$ or $\left.W D_{>}^{3}\right)$ after the first increment/decrement that P_{1} has made an error on (based on $x_{\text {new }}<\frac{x_{\text {old }}}{2}$ for $W I_{<}^{2}$ and so on for each widget). Then the cost incurred by P_{2} is <6 (For example, if P_{2} entered $W I_{>}^{2}$, its cost is $3\left(x_{\text {old }}-2 x_{\text {new }}+2\right)$ which is less than 6 since $\left.x_{\text {new }}>\frac{x_{\text {old }}}{2}\right)$. Thus, $u_{2}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}\right)\right)<6<u_{2}$ (outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)$, which implies that $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ is not an NE.
ii. Assume that λ_{1}^{\prime} is a strategy by which P_{1} executes all instructions of \mathcal{M} correctly. Let c_{1}, c_{2} be the counter values when P_{1} enters Abort. On reaching $F, u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)=5+\frac{1}{2^{c_{1}+c_{2}+\mathrm{T}}}$. As $V_{\mathcal{M}}$ is infinite, there exists $\left(c_{1}^{\prime}, c_{2}^{\prime}\right) \in V_{\mathcal{M}}$ such that $c_{1}^{\prime}+c_{2}^{\prime}>c_{1}+c_{2}$. Let λ_{1} be a strategy which suggests P_{1} enter Abort after correctly simulating instructions of \mathcal{M} until the counter values sum up to $c_{1}^{\prime}+c_{2}^{\prime}$, and then to correctly simulate increments/decrements inside Abort. Then $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}, \lambda_{2}^{\prime}\right)\right)=5+\frac{1}{2^{c_{1}^{\prime}+c_{2}^{\prime}+1}}<u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)=5+$ $\frac{1}{2^{c_{1}+c_{2}+1}}$, which implies that $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ is not an NE.

Thus, we have shown that for a given constant $B=6, \mathcal{M}$ visits finitely many distinct configurations iff there exists a NE in the outcome of which P_{1} has a cost bounded above by B.

Existence of Leader Equilibrium

We use the same game graph construction \mathcal{G} and try to prove this undecidability using 3 clocks using the same simulation as done in the previous section. Note that the only change in the theorem statement is that we prove that there exists a Leader Equilibrium in the outcome of which P_{1} has a cost bounded above by 6 (a constant positive integer) iff the two counter machine \mathcal{M}, that the game simulates visits only finite number of distinct configurations.

Note that there are 2 cases to work out here, the case when P1 is the leader and the case where he isn't.

1. Assume that \mathcal{M} visits finitely many distinct configurations. We saw in the previous section that there exists a strategy profile $\lambda=\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ such that

$$
u_{1}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)=5+\frac{1}{2^{\operatorname{cmanax}_{1}}}, u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)=6
$$

- If P_{1} is the leader

Given the above strategy, it can be seen that P_{2} can't improve his cost by unilaterally deviating from the strategy, because the strategy is a Nash Equilibrium. Hence, the strategy is a leader strategy profile.
It can also be seen that P_{1} can have a cost of less than 6 iff he goes to a final state in an Abort module. And among all the Abort modules, his best cost would be in the one which has $c_{1}+c_{2}=c^{\text {max }}$. Hence, the above strategy is a leader equilibrium as well.

- If P_{2} is the leader

In the strategy profile mentioned, which is a Nash Equilibrium, P_{1} can't unilaterally deviate to improve his cost. Hence, the strategy is a leader strategy profile. Also, since P_{1} simulates everything correctly, the best cost that P_{2} can get is 6 , and hence the strategy given is a leader equilibrium. Note that P_{2} can't suggest P_{1} to perform a wrong simulation and then catch him as this will be strictly lossy for P_{1} and he won't agree to such a strategy.
2. Assume that \mathcal{M} visits infinitely many distinct configurations. Also assume that there exists a Leader Equilibrium $\lambda=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ in the outcome of which, the cost of P_{1} is bounded above by 6 ; that is, $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)<6$. In both the cases, when P_{1} is a leader and when he is not, the cost of either P_{1} or P_{2} can be reduced by a unilateral deviation by the respective player, as was seen in the previous section. Hence, $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ can't be a leader equilibrium.

Thus, we have shown that for a given constant $B=6, \mathcal{M}$ visits finitely many distinct configurations iff there exists a Leader Equilibrium in the outcome of which P_{1} has a cost bounded above by B.

Existence of Incentive Equilibrium

Again, the same game construction is used, and we seek to prove that there exists an Incentive Equilibrium in the outcome of which, P_{1} has a cost bounded above by 6 iff the two counter machine \mathcal{M}, that the game simulates visits only finite number of distinct configurations.

1. Assume that \mathcal{M} visits finitely many distinct configurations. We saw in the previous section that there exists a strategy profile $\lambda=\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ such that

$$
u_{1}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)=5+\frac{1}{2^{\operatorname{cm}^{m a x}+1}}, u_{2}\left(\operatorname{outcome}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)\right)=6
$$

The incentives given in the strategy profile will be mentioned below, according to the case when P_{1} is the leader, or when he isn't.

- If P_{1} is the leader

Assume that the strategy has $\iota\left(P_{2}\right)=0$. Given the above strategy, it can be seen that P_{2} can't improve his cost by unilaterally deviating from the strategy, because the strategy is a Nash Equilibrium. Hence, the strategy is an incentive strategy profile.
It can also be seen that P_{1} can have a cost of less than 6 iff he goes to a final state in an Abort module. And among all the Abort modules, his best cost would be in the one which has $c_{1}+c_{2}=c^{\text {max }}$. He can't improve his cost by changing the strategy of P_{2} and hence, any incentive given for the current strategy will only add to his cost, and hence, the given strategy profile is an incentive equilibrium.

- If P_{2} is the leader

Assume that the strategy has $\iota\left(P_{1}\right)=0$. In the strategy profile mentioned, which is a Nash Equilibrium, P_{1} can't unilaterally deviate to improve his cost. Hence, the strategy is an incentive strategy profile. Note that for P_{2} to improve his cost, he would have to make P_{1} deviate from his correct simulation strategy, and would have to catch him at some wrong simulation to drive the cost of P_{1} beyond 6 and his own cost below. It can be seen that if the cost of P_{1} is $6+\delta$, then the cost of P_{2} will be $6-\delta$. To make P_{1} follow this strategy, an incentive has to be given so that the cost of P_{1} is at most the same as the cost he got in the previous strategy of correct simulation. This incentive equals $\delta+1-\frac{1}{2^{c^{m a x}+1}}$. This, when added to P_{2} 's cost of $6-\delta$ will be greater than 6 and hence, won't benefit P_{2}. Hence, the strategy $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ with the incentive $\iota\left(P_{1}\right)=0$, is an incentive equilibrium.
2. Assume that \mathcal{M} visits infinitely many distinct configurations. Also assume that there exists an Incentive Equilibrium $\lambda=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ in the outcome of which, the cost of P_{1} is bounded above by 6 ; that is, $u_{1}\left(\right.$ outcome $\left.\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right)<6$.

In both the cases, when P_{1} is a leader and when he is not, the cost of either P_{1} or P_{2} can be reduced by a unilateral deviation by the respective player, as was seen in the previous section. Hence, $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)$ can't be an incentive equilibrium.

Thus, we have shown that for a given constant $B=6, \mathcal{M}$ visits finitely many distinct configurations iff there exists an Incentive Equilibrium in the outcome of which P_{1} has a cost bounded above by B.

6 Timed Multiplayer Mean Pay-off Games : a digression

In this section, we discuss another kind of multiplayer timed game which might be interesting to discuss.

The timed multiplayer mean pay-off game structure is defined as a tuple $\mathcal{G}=\left(L, L_{0}, X, Z, P, E, \eta, C\right)$ where, L is a finite set of locations, $L_{0} \subseteq L$ is the singleton set containing the initial location; X is a finite set of clocks; P is the set of n players $\left\{P_{1}, P_{2} \ldots P_{n}\right\} Z$ is a set of n mean-cost variables, where n is the number of players, such that Z_{i} store the mean cost $=\frac{\text { cost accumulated }}{\text { total time elapsed }}$ by $P_{i} ; E \subseteq L \times L \times \Theta(X) \times 2^{X}$ is the set of transitions, where $\Theta(X)$ is the set of all intervals for each of the clocks from which constraints on edge transitions are decided and 2^{X} corresponds to the set of clocks which are reset on taking that transition. $\eta: L \rightarrow \Theta(X)$ is a function assigning clock valuation invariants to each location; $C: L \rightarrow \mathbb{N}^{n}$ is a function associating cost growth rate to each of the players on the game locations. The game is then defined on the above structure as: The set of locations is partitioned into $L_{1}, L_{2}, \ldots L_{n}$ where L_{i} is the set of locations which belong to the player P_{i}. At each location, the owner of that location chooses an edge $e_{i} \in E$ and a time delay t_{i}. Suppose from a state $q=(l, \nu, \mu), l \in L_{i}$, player P_{i} chooses edge e_{i} and time delay t_{i}, then there exist states $q^{\prime}, q^{\prime \prime}$ such that $q=(l, \nu, \mu) \xrightarrow{t_{i}} q^{\prime}=\left(l, \nu+t_{i}, \mu^{\prime}\right) \xrightarrow{e_{i}} q^{\prime \prime}=\left(l^{\prime \prime}, \nu^{\prime \prime}, \mu^{\prime \prime}\right)$. where the state transitions are as defined in Section 2.1, with a slight difference that as the edge $\xrightarrow{e_{i}}$ is taken, there is no further cost incurred for any of the players. Also note that here, $\nu \models \eta(l)$ and $\nu^{\prime \prime} \models \eta\left(l^{\prime \prime}\right)$ and $\nu+t_{i}$ satisfies the transition edge constraints on clock valuations.

A strategy for a player P_{i} is a function $\lambda_{i}: S \rightarrow\left(R^{+} \times E_{i}\right) \cup\{\infty\}$ (where S is the set of all possible values of $\left(l_{i}, \nu, \mu\right)$ where $\nu \models \eta\left(l_{i}\right)$ and $l_{i} \in \mathrm{E}_{i}$, close to the definition in Section 2.1), such that if $\lambda_{i}(q)=\left(t_{i}, e_{i}\right)$, then it possible to incur a delay of t_{i} at a state q, and then take a discrete transition e_{i}. Note that a delay t_{i} of ∞ is allowed if $\eta\left(l_{i}\right)$ allows it. A strategy profile is an n-tuple $\left(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\right)$ of strategies where λ_{i} is a strategy for player P_{i}. A run ρ is said to be played according to a strategy profile if for each node l_{i} that the game visits, the outgoing edge e_{i} and the time delay t_{i} are chosen according to λ_{i} (assuming $\left.l_{i} \in L_{i}\right) . \rho$ in the above case, is said to be the outcome of λ and is denoted as outcome (λ). Note that any run ρ according to strategy λ will be of infinite length (in time). We also define the final accumulated costs for each of the players, as
a function of the run, such that $u_{i}(\rho)$ is the final accumulated cost for player P_{i}. An n-tuple of all these costs for a given run, $u(\rho)=\left(u_{1}(\rho), u_{2}(\rho) \ldots u_{n}(\rho)\right)$. The strategies we consider are memoryless, since we only look at the current state to decide the next move. A terminal history is a run ρ starting from the initial location, ending in a target location and never passing through a target location in between. Given a terminal history ρ, the payoff of player i is $-u_{i}(\rho)$ where $u_{i}(\rho)$ is the cost accumulated along ρ. For a run ρ that does not end in a target location, the payoff for both players is ∞. The objective of each player is to minimize his mean-cost over the run, that is, in the $\lim t \rightarrow \infty$. These games are therefore non-competetive, since neither player aims to increase the others' cost.

Examples

In the example figure 6.1 , player 1 owns node l_{1}, player 2 owns node l_{2} and player 3 owns nodes l_{3}, l_{4} and l_{5}. In the example given, location i has been represented as l_{i} and the edge between locations l_{i} and l_{j} as $e_{i j}$. Note that in the examples below, the strategy we've mentioned is independent of the initial clock valuations when the node is arrived at (because the clock is being reset after each edge). Also, the strategy mentioned is independent of the cost accumulated by each of the players. Hence, in the examples given below, we change our notation for strategy λ slightly and is now represented as $\lambda(l)$ instead of $\lambda(l, \nu, \mu)$.

Fig. 6.1. A multiplayer timed mean pay-off game

Nash Equilibrium

The following strategy is a Nash Equilibrium.

$$
\lambda_{1}\left(l_{1}\right)=\left(1, e_{14}\right), \lambda_{3}\left(l_{4}\right)=\infty, \lambda_{2} \text { need not be specified. }
$$

This gives us:

$$
u(\text { outcome }(\lambda))=(8,9,10)
$$

The values are calculated as(an example of $u_{1}(\operatorname{outcome}(\lambda))$ is shown below:

$$
u_{1}(\text { outcome }(\lambda))=\lim _{t \rightarrow \infty} \frac{20+8(t-1)}{t}=8
$$

Leader Equilibrium

If player 2 is the leader, the following strategy is a Leader Equilibrium:

$$
\lambda_{1}\left(l_{1}\right)=\left(1, e_{12}\right), \lambda_{2}=\left(1, e_{25}\right), \lambda_{3}\left(l_{5}\right)=\infty
$$

This gives us

$$
u(\text { outcome }(\lambda))=(8,8,11)
$$

Incentive Equilibrium

Note that for an incentive strategy profile, the function $\iota: P-P_{l} \rightarrow R$, where P_{l} is the leader, is added to the strategy profile. Here, the leader offers to take a certain amount of mean cost from a player if the player follows the suggested strategy each time he visits some node. This cost is given by $\iota\left(P_{i}\right)$ for a player P_{i}.

Again assume that player 2 is the leader. The following incentive strategy profile is an incentive equilibrium:

$$
\begin{gathered}
\lambda_{1}\left(l_{1}\right)=\left(1, e_{12}\right), \lambda_{2}\left(l_{2}\right)=\left(1, e_{12}\right), \lambda_{3}\left(l_{3}\right)=\infty \\
\iota\left(P_{1}\right)=1, \iota\left(P_{3}\right)=0
\end{gathered}
$$

This gives us:

$$
u(\text { outcome }(\lambda))=(8,1,18)
$$

7 Future Work

The two player timed reachability game with one clock has a solution for finding equilibria. This is an ongoing work, but the existence of the solution has been determined. We believe that the multiplayer reachability game can also be solved to find the different kinds of equilibria. We hope to find the solution of this using the strategy used in [2] for incentive equilibrium and [3] for leader equilibrium. We also hope to build an implementation of the solution, which could take in an input game and output strategy profiles which are NE, LE or IE.

References

1. R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science, 126(2), 183-235, 1994.
2. Anshul Gupta, M. S. Krishna Deepak, Bharath Kumar Padarthi, Sven Schewe and Ashutosh Trivedi. Incentive Equilibria in Mean-payoff Games LIPICS
3. Anshul Gupta and Sven Schewe. Quantitative Verification in Rational Environments. 21st International Symposium on Temporal Representation and Reasoning, TIME 2014, 123-131, 2014
4. Shankara Narayanan Krishna, Lakshmi Manasa, Ashish Chiplunkar. Nash Equilibrium in Weighted Concurrent Timed Games with Reachability Objectives Distributed Computing and Internet Technology - 8th International Conference, ICDCIT 2012, 117-128, 2012
5. T. Brihaye, V. Bruyère, and J. Raskin. Model-Checking for Weighted Timed Automata. Proceedings of FORMATS/FTRTFT'04, LNCS 3253, pp 277-292, 2004.
