
Numerical Linear Algebra Project - GPGPU solutions of the Linear Least
Squares Problem for Simultaneous Localization and Mapping

Zhaoyang Lv
4th year PhD

zhaoyang.lv@gatech.edu

Samarth Mishra
1st year MS

smishra@gatech.edu

Stefan Stojanov
1st year PhD

sstojanov@gatech.edu

Abstract

An accurate and fast linear direct solver is crucial to the general nonlinear least square problems widely
used in computer vision and robotics. In this project, we choose Simultaneous Localization and Mapping
(SLAM) as one application of a nonlinear least-square problem, and focus on studying how the linear direct
solvers can be boosted by the GPGPU based solutions. We implement QR and Cholesky least square solvers
in both single precision and double precision, and compare their performance w.r.t. the its equivalent direct
solvers implemented in Eigen C++ library, which is used as a standard in this application. We provide a
full analysis of these implementations in terms of both accuracy and speed, tested in a SLAM dataset [2].
Our experiments indicate the GPGPU based solutions can bring significant speed up in such sparse matrix
factorization problems.

1. Introduction

Many problems in computer vision and robotics can be formulated as structured graphical models, such as
structure-from-motion (SFM), simultaneous localization and mapping (SLAM), camera calibration, image
denoising, etc. One classical representative of such problem is simultaneous localization and mapping
(SLAM), which is to optimally estimate the camera poses and 3D positions of all features in the scene.

One common approach to address this problem is ‘Bundle Adjustment’ which is to solve the camera
poses and 3D points based on their constraints as a non-linear least square problem [7]. [4] stated that the
Maximum a Posteriori (MAP) Inference of such problems is equivalent to solving a least-square problem
in sparse linear algebra. This approach has enabled large scale dense mapping of the world, accurate robot
localization among other applications. To scale the application of this method to a large environment or to
make it work in an online fashion with low-latency, it is worth exploring a fast and accurate solution.

A standard method solve the nonlinear least-squares problems via an iterative method starting from a suit-
able initial estimate. At each iteration, a linearized least-square problem is solved. The problem complexity
is determined by the iterative methods, e.g. Gauss-Newton (GN), Steepest Descent, and the direct solver
to solve the linearized least-square problem, e.g. Cholesky or QR Decomposition. It is also worth noting
that the matrix formulation in such problems is highly sparse, which is the case in many other computer
vision problems. There are substantial research efforts in accelerating these algorithms by exploiting sparse
matrix factorization. However, the complexity of solving the problem sequentially is still highly subject to
the number of measurements and unknowns.

In recent years, there has been significant progress in highly parallel general purpose GPU (GPGPU)
techniques that accelerate many numerical methods, thus enabling real-time solutions. Although there are
extensive existing efforts in improving the speed of least-square solvers on CPUs, very few approaches in

1

the computer vision domain try to address the least square problem by leveraging GPGPU techniques. It
is also well-known that the matrix formulations of many vision problems including SLAM have special
properties in terms of sparsity, incrementally increasing matrix size, etc. Kaess et al. [6] discovered that an
incremental QR factorization based on Givens rotations can effectively provide a solution in constant time
for SLAM. Meanwhile, there are several works that study sparse QR factorization leveraging GPGPU, but
none of these approaches address these problems in the vision domain.

In this project, we explored the GPGPU techniques that can impact the general sparse matrix factoriza-
tion, and can benefit the least-square solvers. We will start from the nonlinear least-square problem in the
simultaneous localization and mapping (SLAM) and formulate the linearized least-square equations. We
will focus on implementing and benchmarking the GPU versions of sparse least-square solvers v.s. the
commonly used CPU solvers in C++ Eigen implementation [5]. Our benchmark shows that current GPU
implementations can deliver significantly faster sparse matrix solutions without losses in accuracy.

2. Background and Related Work

2.1. Simultaneous Localization and Mapping

SLAM or simultaneous localization and mapping is one of the most important requirements of au-
tonomous robotic agents. More specifically, this requires the robot to (1) autonomously navigate and explore
unknown places and (2) allow for the use of the robot’s presence in the environment to generate a map of
an unknown place for later use. A smoothing approach to SLAM involves not just the most current robot
location, but the entire robot trajectory up to the current time. SAM—Smoothing and Mapping [4] is the full
SLAM approach optimally estimating the entire set of sensor poses along with the parameters of all features
in the environment, which also has a long historical connection to photogrammetry where it is known as
bundle adjustment and computer vision, where it is referred to as structure from motion.

Dellaert et al. [4] describe how the optimization problem associated with full SLAM can be concisely
stated in terms of sparse linear algebra. The full SLAM problem is to estimate the entire trajectory X =
{x1, x2, ..., xn} and the map L = {l1, l2, ..., lm}, given the measurements Zz1,z2,...,zk . In this paper, instead
of using a full SLAM setting, we will only consider the optimization problem that only estimates the entire
trajectory X , by marginalizing all the other information into the pair-wise constraint f(xi−1, xi), which is
also termed as the Pose-Graph problem. The state X can be solved by obtaining a maximum a posteriori
estimate resulting in a nonlinear optimization problem:

X = argmin
X

N∑
i=1

‖f(xi−1, xi)‖2 (1)

Solving the nonlinear optimization problem is possible using an iterative method e.g. Gauss Newton
Method or Newton’s Method. At each iteration, we update Xk+1 = Xk + δX , where δX is the solution of
the following sparse linear system:

JδX = r (2)

Here r is the residual vector and J = J(X, f) is the Jacobian matrix of pairwise constraints f(xi−1, xi)
w.r.t. X linearized at each iteration Xk. The vector δX is the solution of the least-square problem:

δX = argmin ‖AδX − b‖2 (3)

It is worth to note that matrix A is a normally very sparse matrix (as evident in Figure 3) and over-
determined m × n, (m > n). When A = J, b = r, we can apply a QR factorization to the problem and

2

solve it as ‖AδX − b‖2 = ‖RδX − d‖2 + ‖e‖2. When A = J>J and b = Jr, we solve the normal
equations with Cholesky factorization.

2.2. Complexity of Sparse Linear Solvers

Since n < m in the general case, the Cholesky factorization enables us to solve the problem much more
efficiently with a much smaller scale. Cholesky factorization with normal equations takes (m+ n

3)n
2 flops

and Householder QR factorization takes 2(m − n
3)n

2 flops to solve the linear least squares problem. Note
that these flop counts are both for dense matrices, where in practice it is evident that the matrices are often
sparse. It is important to note the advantage of QR factorization due to its numerical stability.

Another property is that the dimensions of this matrix grow with the number of states, landmarks and
measurements used to perform SAM, emphasizing that the use of the sparse characteristics of this in solving
the least squares problem is crucial. Nowadays there are strong requirements for low-latency SLAM sys-
tems, which would require fast real-time solutions regardless of the problem scale. However, as the problem
size goes larger, the complexity of linear least-square problem, which is (m + n

3)n
2 w.r.t. the number of

unknowns in the general Cholesky factorization, is the biggest computation cost.
In this project, we explore methods for linear least squares to evaluate the gains possible in applications

such as SLAM/SFM due to using GPUs and exploiting sparsity. Our results show least-squares based
approaches can be greatly boosted with the prevalent usage of GPUs.

2.3. Existing GPU Least Squares Solvers

There has been a significant effort towards developing techniques that exploit the inherent parallelism
in numerical problems implemented on powerful devices that support parallelism very well such as GPUs.
This is evident in the toolkits developed for these devices, with CUDA toolkit provided by NVIDIA that
includes the cuSolver library. Specifically relevant to our project is the cuSolverSP subset of cuSolver,
which is a library specifically developed for solving sparse linear systems. Additionaly, there are Givens
rotations included in the cuBLAS library which we used when exploring the Givens rotation based methods
for sparse QR decomposition.

3. Our Approach

We establish benchmark performances of different CPU and GPU implementations for the solutions of
Linear Least Squares problem on sparse matrices. We use the Eigen C++ library for the CPU implementa-
tions and the CUDA cuSolverSP library for the GPU implementations. All these sparse matrix implementa-
tions use the CSR/CSC sparse matrix format.

3.1. CSR and CSC sparse matrix formats

The Compressed Sparse Row (CSR) format represents a matrix A using three one-dimensional arrays, that
respectively contain nonzero values, the extent of rows and column indices [8]. The three one-dimensional
arrays (M, IM, JM) store a sparse matrix m× n matrix A as (Let NNZ be the number of non-zero elements
in A) :

• The array M of length NNZ stores the non-zeros elements of A in row-major order.

• The array IM is of length m+1. The first m elements of this array store the locations in M of the first
non-zero element of each row of A. The last element stores the value NNZ (which is where the first
non-zero element of the next row would be, had there been a next row).

• The array JM of length NNZ stores the column index in the matrix A for each of the elements in M.

3

As an example, the CSR representation of the matrix

A =

10 20 0 0 0 0
0 30 0 40 0 0
0 0 50 60 70 0
0 0 0 0 0 80

can be written as:

M = [10 20 30 40 50 60 70 80]
IM = [0 2 4 7 8]
JM = [0 1 1 3 2 3 4 5]

The Compressed Sparse Column (CSC) format is very similar to the CSR format. If (M, IM, JM) = CSC(A),
and the elements of A are stored in column-major order in M, JM stores the row-indices of each element in
M, and IM indexes into M, to give the locations of the first non-zero element of each of A’s columns. The
sizes of M, IM and JM are NNZ, n+ 1 and NNZ respectively, where A is a matrix of size m× n and NNZ
is the total number of non-zero elements in A. It is easy to see that CSR(A) = (M,IM,JM) = CSC(A>).

3.2. Method and Benchmark Algorithms

We use an existing implementation of Nonlinear optimization based on a factor graph refering to [4],
which provides the linearization of the constraints. By using this implementation, we can derive the Jacobian
matrix described in Equation 2. Note that the study of nonlinear optimization is outside the scope of this
project. Forthe remaining discussion, we will fix the same linearization step and parameters, and only
change the implementation of the linear least-square problem of the linearized matrix in Equation 2.

We implement five least-square solvers in C++ by utilizing C++ Eigen Library and NVIDIA CuSolver
Library. For all the CUDA implementations, we tried algorithms using both single precision and double
precision. Following are the algorithms we include in our benchmark :

• CPU LAPACK Sparse QR Decomposition: Using the Eigen::SparseQR class which uses a
sparse Householder QR decomposition method.

• CPU LAPACK Sparse Cholesky factorization : Using the Eigen::SimplicialLDLT class which
returns the cholesky factorization of a sparse symmetric positive definite matrix. The solution is used
to solve the system of normal equations J>J = J>r.

• CPU Conjugate Gradient Method: Eigen::ConjugateGradient class. Iterative linear least-
square solvers is often used to solve large scale problems and claimed to have faster convergence. We
found that the class conjugate gradient method does not give good convergence, and the method only
works with preconditioning using incomplete Cholesky.

• GPU cuSolverSP Cholesky factorization: Using the cusolverSpScsrlsvchol function (for sin-
gle precision) and cusolverSpDcsrlsvchol function (for double precision) for solving the sys-
tem of normal equations.

• GPU cuSolverSP QR Decomposition: Using low level cuSPARSE functions for double precision
cusolverSpDcsrqrSetup, cusolverSpDcsrqrFactor and cusolverSpDcsrqrSolve
and the corresponding functions for single precision. cuSPARSE uses a sparse Householder QR de-
composition method.

4

3.3. Parallelism using CUDA kernels

CUDA GPUs can support several parallel threads (∼ 2048) on each of multiple different Streaming
Multiprocessors. Hence, parallelizing a great amount of lower level operations can lead to a significant
speedup on a GPU.

A CUDA kernel is a specialized function that can be executed by one such thread on a GPU, and has
access to GPU device memory. CUDA kernels are called by a piece of code running on the CPU through an
instruction that specifies the number of parallel threads and blocks of threads to be used.

3.4. Implementing QR Givens : Approach and Problems

Inspired by the sparsity in the matrix representation and Givens rotations in parallel execution, we also
implemented a QR Givens method in CUDA. Note that this implementation might not be very efficient on a
sparse matrix in the CSR/CSC format because of the constant updates to the number of non-zero elements
during computation. This would lead to memory allocations after every Givens rotation is applied—a very
time consuming process in comparison to the arithmetic operations. Hence, this method operates on dense
matrices as shown in algorithm 1. Note that here, the upper triangular matrix R is accumulated in A and
Q>b overwritten in b. Note that both the matrices A and b reside in the GPU memory.

A GPU implementation involving independent row rotations being done in parallel [1] can be written,
but is beyond the scope of current work. In our implementation, we try to reduce work by selective rotation
when necessary. Note that this requires a zero-check as in line 7 of algorithm 1. There are two approaches
that are possible here. Performing the check on the CPU is the first approach, after which a CUDA kernel
may be called to modify A with the rotation. This zero-check requires an element copy from GPU device
memory to host (CPU) memory. However, this copy step bottlenecks the computation, and hence, this
approach is not very efficient.

A second approach is to launch parallel CUDA threads and perform the steps inside the loops (lines 5-
11 of algorithm 1) in a CUDA kernel. This requires syncing of different threads after the computation of
(c, s), because there is a potential race condition, in accessing the elements of A and modifying them. This
approach did lead to significant speedup as compared to the first one. However, it was not good enough to
compete with any of our other GPU benchmarks. Hence, this algorithm was dropped entirely from our list
of benchmarks.

Algorithm 1 QR Givens for LS Problem
1: A : An m× n matrix
2: b : An m× 1 vector
3: for i = 1 to n do
4: for j = m downto i+ 1 do
5: a1 ← A(j, i)
6: a2 ← A(j − 1, i)
7: if a2 == 0 then
8: continue
9: end if

10: Compute Givens rotation (c, s) using (a1, a2)
11: Apply above rotation on rows j and j − 1 of A and b
12: end for
13: end for
14: Solve the equation A(1 : n, 1 : n)x = b(1 : n) by back substitution

5

Figure 1. Illustrating the pose graph solved by the Gauss-Newton method at initial state (in red) and the output solution
after optimization has been performed (in blue).

4. Experiments

Data and experiment setting We used data from 2D Pose Graph Optimizations [3] to get the LS problems
for our study. To exclude the effect of nonlinearity effect in optimization, we specifically used the m3500
pose graph data from [2], which can be robustly solved via the Newton’s method. The method turns to
Gauss Newton approach when we are using solving the normal equation with Cholesky factorization for
J>JδX = J>b. In Figure 1, we show the initial pose trajectory measured from odometry sensors (in red),
and the optimized trajectory after optimization (in blue). The optimized trajectory is approximately the same
as the ground truth. For all the linear least-square solvers we implemented, they all can converge to the same
solution, but differs in execution time and the number of iterations.

Our experiments were performed on an Intel i7-6850K Broadwell CPU for CPU benchmarks and a
NVIDIA TITAN X GPU for the GPU benchmarks. The iterative Gauss-Newton optimization method was
stopped when the change in error between consecutive iterations was less than ε = 10−6.

Sparsity of problem For the m3500 pose graph, the linearized system solved at each iteration is 16362×
10500 where e.g. at the first iteration 54, 533 elements out of the 171, 801, 000 elements of the matrix were
nonzero, indicating a highly sparse problem. The sparsity characteristics of the problem are further evident
in Figure 3 and Figure 4.

Benchmark For each of the methods we benchmarked speed and accuracy of the linear least square
solvers, and for the GPU implementations we evaluate both single precision and double precision versions
of the algorithm. The comparison of single precision against double precision on GPUs is of particular
interest since fast single precision GPU hardware e.g. NVIDIA GTX series is multiple-fold less expensive
than fast double precision GPU hardware e.g. NVIDIA Tesla series. The residual of the linearized system
is used to measure the rate of convergence and accuracy.

6

Table 1. A time comparison among the various GPU and CPU based least squares solvers. SP indicate single precision
and DP indices double precision. We did not include Eigen QR timing because it takes too long to generate the solution
(2 hours per iteration). It is evident that the GPU based least squares implementations are significantly faster.

Method Eigen CG Eigen Cholesky cuCholesky SP cuCholesky DP cuQR SP cuQR DP
Time 6.6 min 49 s 3481 ms 2637 ms 40 s 46.4 s

Iterations 6 6 22 6 6 6

0 1 2 3 4 5 6 7 8 9

Iterations

101

102

103

104

105

106

107

R
e
si

d
u

a
l

Eigen Cholesky

Eigen Conjugate Gradient

CUDA QR Single Precision

CUDA QR Double Precision

CUDA Cholesky Single Precision

CUDA Cholesky Double Precision

Figure 2. All methods reduce the residual in a similar manner over multiple iterations. Note that the single precision
Cholesky solver runs for 22 iterations; this plot has a shorter x axis for the purpose of clarity. We find that the
double precision implementation of direct solvers produce the same results as Eigen implementations. Single precision
implementation generates the solution slightly faster in each iteration, but provides less accurate solution and takes
more iterations for Newton’s approach to converge.

5. Discussion

From Table 4 it is evident that using GPU hardware for sparse linear system solving results in better ex-
ploitation of the inherent parallelism in such problems. GPU based implementations outperform CPU based
implementations by a wide margin. The performance of the GPU Cholesky implementation, that is cuC-
holesky, implementation provides empirical evidence of the numerical instability of the normal equations
approach. It is known that Cholesky factorization is prone to numerical instabillity due to a larger condition
number of LHS matrix induced by the normal equations, which is exacerbated by using single precision
arithmetic. The single precision cuCholesky took longer (22 iterations) to reach the stopping criterion and
had the residual drop slower than other methods. We therefore have shown that using GPU hardware to
solve linear least squares problems as a part of the larger simultaneous localization and mapping problem is
a very attractive solution. This is especially important since fast computation of these subproblems allows
for a larger total number of measurements to be used for the factor graph.

Although for this specific problem, QR factorization and Cholesky based least squares methods do not
vary greatly in numerical stability through our experiments we have shown that using GPUs can potentially

7

Figure 3. Illustrating the highly sparse structure of the matrix A in the linear least squares problem. Number of nonzero
elements is 54, 533 elements out of 171, 801, 000.

Figure 4. Further evidence of the highly sparse structure of the matrix A in the linear least squares problem. The left
image illustrates the structure of A[9000 : 9100, 9000 : 9100] and the right image illustratesA[2500 : 3000, 11500 :
12000]

allow for significantly faster and numerically stable QR factorization based solutions for other applications.

6. Conclusion

In this project we implement and apply different linear direct solvers utilizing CPU and GPU to a nonlin-
ear optimization problem and provide an analysis of their comparisons. This analysis mainly brings to light

8

the speed improvement brought about by implementing sparse matrix algorithms on the GPU. The different
benchmarks help gauge the relative performance of different algorithms for solving the sparse matrix least
squares problem.

References
[1] R. Andrew and N. Dingle. Implementing qr factorization updating algorithms on gpus. Parallel Computing,

40(7):161–172, 2014. 5
[2] L. Carlone. https://lucacarlone.mit.edu/datasets/. 1, 6
[3] L. Carlone and A. Censi. From angular manifolds to the integer lattice: Guaranteed orientation estimation with

application to pose graph optimization. IEEE Transactions on Robotics, 30(2):475–492, 2014. 6
[4] F. Dellaert and M. Kaess. Square root sam: Simultaneous localization and mapping via square root information

smoothing. The International Journal of Robotics Research, 25(12):1181–1203, 2006. 1, 2, 4
[5] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010. 2
[6] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and mapping. IEEE Trans. on Robotics

(TRO), 24(6):1365–1378, Dec. 2008. 2
[7] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjustment — a modern synthesis. In

B. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory and Practice, pages 298–372, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg. 1

[8] Wikipedia. https://en.wikipedia.org/wiki/Sparse_matrix. 3

9

https://lucacarlone.mit.edu/datasets/
https://en.wikipedia.org/wiki/Sparse_matrix

Appendix A. Code

Following are the selected files in the implementation containing our LS solvers :

• minisam/linear/cuDirectSolvers.h

#pragma once

#include <Eigen/Core>
#include <Eigen/SparseCore>

#include <cusolverSp_LOWLEVEL_PREVIEW.h>
#include <cusparse_v2.h>
#include <cusolverSp.h>
#include <cuda_runtime.h>

#ifdef USE_DOUBLE_PRECISION
#define TYPE double
#else
#define TYPE float
#endif

namespace minisam {

class CudaDirectSolver {
// cholesky ordering
enum {

CHOLESKY_NO_ORDERING,
CHOLESKY_SYMRCM,
CHOLEKSY_SYMAMD

};

public:

CudaDirectSolver();

CudaDirectSolver(const Eigen::SparseMatrix<double>& A,
const::Eigen::VectorXd& b, const bool normal=true);↪→

˜CudaDirectSolver() {
free_all();

}

void solve_cholesky(Eigen::VectorXd &x);

void solve_spQR(Eigen::VectorXd& x);

void compute_residual();

private:

cusolverSpHandle_t cusolverSpH; // reordering, permutation and 1st LU
factorization↪→

10

cusparseHandle_t cusparseH; // residual evaluation
cudaStream_t stream;
cusparseMatDescr_t descrA; // A is a base-0 general matrix

csrcholInfo_t d_info; // opaque info structure for LU with parital
pivoting↪→

// device sparse matrix in CSR(A)
int *d_csrRowPtrA; // <int> n+1
int *d_csrColIndA; // <int> nnzA
TYPE *d_csrValA; // <double> nnzA
TYPE *d_x; // <double> n, x = A \ b
TYPE *d_b; // <double> n, a copy of h_b
TYPE *d_r; // <double> n, r = b - A*x

// host
TYPE *h_x; // <double> n, x = A \ b

int rowsA; // number of rows of A
int colsA; // number of columns of A
int nnzA; // number of nonzeros of A
int baseA; // base index in CSR format

bool is_normal;

void initialize(const Eigen::SparseMatrix<double> &A,
const Eigen::VectorXd &b);

void free_all();

Eigen::SparseMatrix<double> csc2csr(const Eigen::SparseMatrix<double>&
A) {↪→

if (is_normal) {
colsA = A.cols();
rowsA = A.rows();
return A;

}
else {

colsA = A.cols();
rowsA = A.rows();
return A.transpose();

}
}

};

}

• minisam/linear/cuDirectSolvers.cpp

#include "cuDirectSolver.h"

#include <iostream>

11

#include "cuda/common/inc/helper_cuda.h"

using namespace std;

namespace minisam {

CudaDirectSolver::CudaDirectSolver()
: cusolverSpH(NULL), cusparseH(NULL), stream(NULL), descrA(NULL),

d_info(NULL), d_csrRowPtrA(NULL), d_csrColIndA(NULL),
d_csrValA(NULL),↪→

d_x(NULL), d_b(NULL), d_r(NULL), h_x(NULL), is_normal(true){
}

CudaDirectSolver::CudaDirectSolver(const Eigen::SparseMatrix<double> &A,
const ::Eigen::VectorXd &b,
const bool normal)

: cusolverSpH(NULL), cusparseH(NULL), stream(NULL), descrA(NULL),
d_info(NULL), d_csrRowPtrA(NULL), d_csrColIndA(NULL),

d_csrValA(NULL),↪→

d_x(NULL), d_b(NULL), d_r(NULL), h_x(NULL), is_normal(normal) {
initialize(A, b);

}

void CudaDirectSolver::initialize(const Eigen::SparseMatrix<double>
&A_src,↪→

const Eigen::VectorXd &b_src) {

#ifdef USE_DOUBLE_PRECISION
const auto A = csc2csr(A_src);
const auto& b = b_src;

#else
const Eigen::SparseMatrix<float> A = csc2csr(A_src).cast<float>();
const Eigen::VectorXf b = b_src.cast<float>();

#endif

nnzA = A.nonZeros(); // number of nonzeros of A
baseA = A.outerIndexPtr()[0]; // base index in CSR format

checkCudaErrors(cudaMalloc((void **)&d_csrRowPtrA, sizeof(int) *
(rowsA + 1)));↪→

checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int) *
nnzA));↪→

checkCudaErrors(cudaMalloc((void **)&d_csrValA, sizeof(TYPE) *
nnzA));↪→

checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(TYPE) * colsA));
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(TYPE) * rowsA));
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(TYPE) * rowsA));

// note that Eigen uses CSC format, while cusparse uses CSR format
// but here since A is symetric, it does not matter in this case
checkCudaErrors(cudaMemcpy(d_csrValA, A.valuePtr(), nnzA *

sizeof(TYPE), cudaMemcpyHostToDevice));↪→

12

checkCudaErrors(cudaMemcpy(d_csrRowPtrA, A.outerIndexPtr(), (1 +
A.outerSize()) * sizeof(int), cudaMemcpyHostToDevice));↪→

checkCudaErrors(cudaMemcpy(d_csrColIndA, A.innerIndexPtr(), nnzA *
sizeof(int), cudaMemcpyHostToDevice));↪→

checkCudaErrors(cudaMemcpy(d_b, b.data(), sizeof(TYPE) * rowsA,
cudaMemcpyHostToDevice));↪→

h_x = (TYPE *)malloc(sizeof(TYPE) * colsA);

checkCudaErrors(cusolverSpCreate(&cusolverSpH));
checkCudaErrors(cusparseCreate(&cusparseH));
checkCudaErrors(cudaStreamCreate(&stream));
checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream));
checkCudaErrors(cusparseSetStream(cusparseH, stream));
checkCudaErrors(cusparseCreateMatDescr(&descrA));
checkCudaErrors(cusparseSetMatType(descrA,

CUSPARSE_MATRIX_TYPE_GENERAL));↪→

if (baseA)
checkCudaErrors(cusparseSetMatIndexBase(descrA,

CUSPARSE_INDEX_BASE_ONE));↪→

else
checkCudaErrors(cusparseSetMatIndexBase(descrA,

CUSPARSE_INDEX_BASE_ZERO));↪→

}

void CudaDirectSolver::solve_cholesky(Eigen::VectorXd& x) {
// the constant used in cusolverSp
// singularity is -1 if A is invertible under tol
// tol determines the condition of singularity
int singularity = 0;
const double tol = 1.e-14;

#ifdef USE_DOUBLE_PRECISION
checkCudaErrors(cusolverSpDcsrlsvchol(

cusolverSpH, rowsA, nnzA, descrA,
d_csrValA, d_csrRowPtrA, d_csrColIndA,
d_b, tol, CHOLESKY_SYMRCM, d_x, &singularity));

#else
checkCudaErrors(cusolverSpScsrlsvchol(

cusolverSpH, rowsA, nnzA, descrA,
d_csrValA, d_csrRowPtrA, d_csrColIndA,
d_b, tol, CHOLESKY_SYMRCM, d_x, &singularity));

#endif

checkCudaErrors(cudaMemcpy(h_x, d_x, sizeof(TYPE)*colsA,
cudaMemcpyDeviceToHost));↪→

#ifdef USE_DOUBLE_PRECISION
x = Eigen::Map<Eigen::VectorXd> (h_x, colsA);

#else
x = Eigen::Map<Eigen::VectorXf>(h_x, colsA).cast<double>();

#endif

13

}

void CudaDirectSolver::solve_spQR(Eigen::VectorXd& x){

csrqrInfo_t d_info = NULL;
size_t size_internal = 0;
size_t size_chol = 0;
void *buffer_gpu = NULL;

const double zero = 0.0;

int singularity = 0;
const double tol = 1.e-14;

checkCudaErrors(cusolverSpCreateCsrqrInfo(&d_info));

checkCudaErrors(cusolverSpXcsrqrAnalysis(
cusolverSpH, rowsA, colsA, nnzA,
descrA, d_csrRowPtrA, d_csrColIndA,
d_info));

#ifdef USE_DOUBLE_PRECISION
checkCudaErrors(cusolverSpDcsrqrBufferInfo(

cusolverSpH, rowsA, colsA, nnzA,
descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
d_info,
&size_internal,
&size_chol));

checkCudaErrors(cudaMalloc(&buffer_gpu, sizeof(char) * size_chol));

checkCudaErrors(cusolverSpDcsrqrSetup(
cusolverSpH, rowsA, colsA, nnzA,
descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
zero,
d_info));

checkCudaErrors(cusolverSpDcsrqrFactor(
cusolverSpH, rowsA, colsA, nnzA,
NULL, NULL,
d_info,
buffer_gpu));

checkCudaErrors(cusolverSpDcsrqrSolve(
cusolverSpH, rowsA, colsA, d_b, d_x, d_info, buffer_gpu));

#else
checkCudaErrors(cusolverSpScsrqrBufferInfo(

cusolverSpH, rowsA, colsA, nnzA,
descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
d_info,
&size_internal,
&size_chol));

14

checkCudaErrors(cudaMalloc(&buffer_gpu, sizeof(char) * size_chol));

checkCudaErrors(cusolverSpScsrqrSetup(
cusolverSpH, rowsA, colsA, nnzA,
descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
zero,
d_info));

checkCudaErrors(cusolverSpScsrqrFactor(
cusolverSpH, rowsA, colsA, nnzA,
NULL, NULL,
d_info,
buffer_gpu));

checkCudaErrors(cusolverSpScsrqrSolve(
cusolverSpH, rowsA, colsA, d_b, d_x, d_info, buffer_gpu));

#endif

checkCudaErrors(cudaMemcpy(h_x, d_x, sizeof(TYPE)*colsA,
cudaMemcpyDeviceToHost));↪→

#ifdef USE_DOUBLE_PRECISION
x = Eigen::Map<Eigen::VectorXd>(h_x, colsA);

#else
x = Eigen::Map<Eigen::VectorXf>(h_x, colsA).cast<double>();

#endif

if (buffer_gpu)
checkCudaErrors(cudaFree(buffer_gpu));

if (d_info)
checkCudaErrors(cusolverSpDestroyCsrqrInfo(d_info));

}

void CudaDirectSolver::free_all() {
if (h_x)

free(h_x);

if (cusolverSpH)
checkCudaErrors(cusolverSpDestroy(cusolverSpH));

if (cusparseH)
checkCudaErrors(cusparseDestroy(cusparseH));

if (stream)
checkCudaErrors(cudaStreamDestroy(stream));

if (descrA)
checkCudaErrors(cusparseDestroyMatDescr(descrA));

if (d_csrValA)
checkCudaErrors(cudaFree(d_csrValA));

if (d_csrRowPtrA)
checkCudaErrors(cudaFree(d_csrRowPtrA));

if (d_csrColIndA)
checkCudaErrors(cudaFree(d_csrColIndA));

if (d_x)
checkCudaErrors(cudaFree(d_x));

15

if (d_b)
checkCudaErrors(cudaFree(d_b));

if (d_r)
checkCudaErrors(cudaFree(d_r));

}

}

• minisam/linear/DirectSolvers.h

#pragma once

#include <Eigen/Core>
#include <Eigen/SparseCore>

namespace minisam {

/**
* wrapper of Eigen SparseQR, using built-in COLAMD ordering

* @param LHS matrix

* @param RHS vector

* @param output x

*/
void qrSolver(const Eigen::SparseMatrix<double>& A, const

Eigen::VectorXd& b,↪→

Eigen::VectorXd& x);

/**
* wrapper of Eigen SparseLDLT, using built-in COLAMD ordering

* @param LHS matrix

* @param RHS vector

* @param output x

*/
void choleskySolver(const Eigen::SparseMatrix<double>& A, const

Eigen::VectorXd& b,↪→

Eigen::VectorXd& x);

/**
* wrapper of Eigen Conjugate Gradient Method (Symmetric AtA)

* @param LHS matrix

* @param RHS vector

* @param output x

*/
void conjugateGradientSolver(const Eigen::SparseMatrix<double>& A, const

Eigen::VectorXd& b,↪→

Eigen::VectorXd& x);

/**
* wrapper of Eigen Conjugate Gradient Method for rectangular

least-square problem↪→

* @param LHS matrix

* @param RHS vector

* @param output x

16

*/
void conjugateGradient_leastSquareSolver(const

Eigen::SparseMatrix<double> &A, const Eigen::VectorXd &b,↪→

Eigen::VectorXd &x);

/**
* wrapper of Cuda Sparse Cholesky solver (from cuSolver)

* @param LHS matrix

* @param RHS vector

* @param output x

*/
void cuda_Cholesky(const Eigen::SparseMatrix<double> &A, const

Eigen::VectorXd &b, Eigen::VectorXd &x);↪→

/**
* wrapper of Cuda Sparse QR solver (from cuSolver)

* @param LHS matrix

* @param RHS vector

* @param output x

*/
void cuda_QR(const Eigen::SparseMatrix<double> &A, const Eigen::VectorXd

&b,↪→

Eigen::VectorXd &x);

}

• minisam/linear/DirectSolvers.cpp

#include <minisam/linear/DirectSolver.h>
#include <minisam/linear/cuDirectSolver.h>
#include <Eigen/SparseQR>
#include <Eigen/SparseCholesky>
#include <Eigen/IterativeLinearSolvers>

#include <iostream>

using namespace std;

namespace minisam {

void qrSolver(const Eigen::SparseMatrix<double>& A, const
Eigen::VectorXd& b,↪→

Eigen::VectorXd& x) {

cout << "Solving Least Square with sparse QR Solver " <<
"Matrix A size (MxN): " << A.rows() << "x" << A.cols() << endl;

Eigen::SparseQR<Eigen::SparseMatrix<double>,
Eigen::COLAMDOrdering<int>> qr(A);↪→

if (qr.info() != Eigen::Success)
throw std::runtime_error("[qrSolver] QR error");

x = qr.solve(b);
}

17

void choleskySolver(const Eigen::SparseMatrix<double>& A, const
Eigen::VectorXd& b,↪→

Eigen::VectorXd& x) {

cout << "Solving Least Square with Cholesky Solver. " <<
"Matrix AtA size (NxN): " << A.cols() << "x" << A.cols() << endl;

// prepare AtA and Atb
Eigen::SparseMatrix<double> AtA(A.cols(), A.cols());
AtA.selfadjointView<Eigen::Lower>().rankUpdate(A.adjoint());
Eigen::VectorXd Atb = A.adjoint() * b;

Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, Eigen::Lower,
Eigen::COLAMDOrdering<int>> chol(AtA);

if (chol.info() != Eigen::Success)
throw std::runtime_error("[choleskySolver] Cholesky error");

x = chol.solve(Atb);
}

void conjugateGradientSolver(const Eigen::SparseMatrix<double>& A,
const Eigen::VectorXd& b, Eigen::VectorXd& x) {

cout << "Solving Least Square with (Incomplete Cholesky)
Preconditioned Conjugate Gradient Solver" <<↪→

"Matrix AtA size (NxN): " << A.cols() << "x" << A.cols() << endl;

Eigen::SparseMatrix<double> AtA(A.cols(), A.cols());
AtA = A.transpose() * A;
Eigen::VectorXd Atb = A.transpose() * b;

Eigen::ConjugateGradient<Eigen::SparseMatrix<double>, Eigen::Upper,
Eigen::IncompleteCholesky<double> > cg;↪→

cg.compute(AtA);
x = cg.solve(Atb);

}

void conjugateGradient_leastSquareSolver(const
Eigen::SparseMatrix<double>& A, const Eigen::VectorXd& b,↪→

Eigen::VectorXd& x) {
cout << "Solving Least Square with Conjugate Gradient Solver on

rectangular matrix. " <<↪→

"Matrix A size (MxN): " << A.rows() << "x" << A.cols() << endl;

Eigen::LeastSquaresConjugateGradient<Eigen::SparseMatrix<double> >
cg;↪→

cg.compute(A);
x = cg.solve(b);

}

void cuda_QR(const Eigen::SparseMatrix<double> &A, const Eigen::VectorXd
&b,↪→

18

Eigen::VectorXd &x) {
CudaDirectSolver cusolver(A, b, false);
cusolver.solve_spQR(x);

}

void cuda_Cholesky(const Eigen::SparseMatrix<double> &A, const
Eigen::VectorXd &b, Eigen::VectorXd &x) {↪→

// prepare AtA and Atb
cout << "Solving Least Square with cuSolver Cholesky "

<< "Matrix AtA size (NxN): " << A.cols() << "x" << A.cols() <<
endl;↪→

Eigen::SparseMatrix<double> AtA(A.cols(), A.cols());
AtA = A.transpose() * A;
Eigen::VectorXd Atb = A.transpose() * b;

CudaDirectSolver cusolver(AtA, Atb);
cusolver.solve_cholesky(x);

}

}

19

