GPGPU solutions of the Linear Least Squares Problem for Simultaneous Localization and Mapping

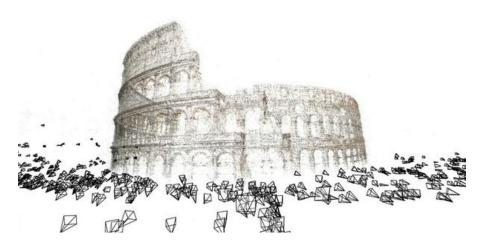
Zhaoyang Lv, Samarth Mishra, Stefan Stojanov

Introduction

Solving nonlinear least-square problems are widely used in Robotics and Computer Vision:

- Simultaneous Localization and Mapping
- Structure from Motion
- Object Tracking
- Etc.

All of the least-square solvers heavily rely on efficient and accurate matrix factorization of the linearized problem.



[Building Rome in a Day, ICCV, 2009]

Nonlinear Least-square Problem Revisited

Consider a SLAM problem with only pairwise constraint:

$$X = \underset{X}{\operatorname{argmin}} \sum_{i=1}^{N} \|f(x_{i-1}, x_i)\|_2$$

Using iterative method, e.g. Newton's method, we update

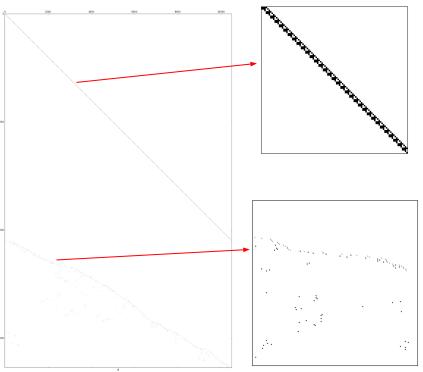
 $X^{k+1} = X^k + \delta X$ Jacobian Matrix of the pairwise constraint $\mathbf{J}\delta X = \mathbf{r}$ Residual at each iteration

We can solve the following the least square problem:

 $\delta X = \operatorname{argmin} \|A\delta X - b\|_2$

- 1. QR Factorization $A = \mathbf{J}, b = \mathbf{r},$
- 2. Cholesky Factorization $A = \mathbf{J}^{\top} \mathbf{J}$ and $b = \mathbf{Jr}$
- The LHS matrix is highly sparse.
- In general, M > N. More measurements than unknowns.

An example of Jacobian matrix J (16362 x 10500)



Our Implementation

We focus on solving $\delta X = \operatorname{argmin} \|A\delta X - b\|_2$

We implement and evaluate 6 different (CPU and GPU) benchmark algorithms that solve the LS problem on sparse matrices. These use the Compressed Sparse Row/Column (CSR/CSC) format to represent the matrix.

Example :

	(0)	0	0	$0 \rangle$	CSR(A) = (M, IM, JM)	
A =	5	8	0	0	M = [5836]	All non-zero elements
		0	0 9	0	IM = [00234]	Index into M, first non-zero in row
		0	3	U	JM = [0121]	Column indices for all elements in M
	$\setminus 0$	6	0	0/	5101 - [0121]	

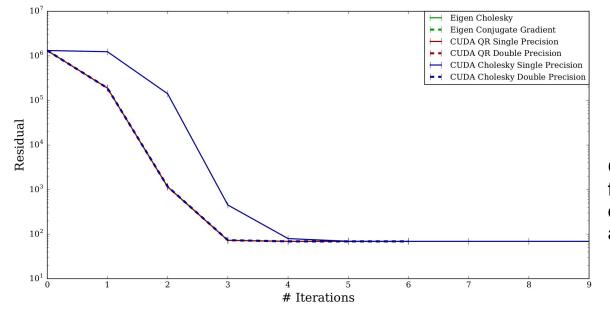
Benchmark Algorithms:

- **CPU** Sparse Householder QR decomposition [Eigen C++ library]
- CPU Sparse Cholesky Decomposition for solving normal equations [Eigen C++ library]
- **CPU** Sparse Conjugate Gradient Method with Incomplete Cholesky Preconditioning . [Eigen C++ library]
- **GPU** Sparse Householder QR decomposition [cuSolverSP library] (Both single and double precision)
- **GPU** Sparse Cholesky Decomposition [cuSolverSP library] (Both single and double precision)

CSR Example Source : https://en.wikipedia.org/wiki/Sparse_matrix

GPGPU v.s. CPU Least-square Solver Comparison

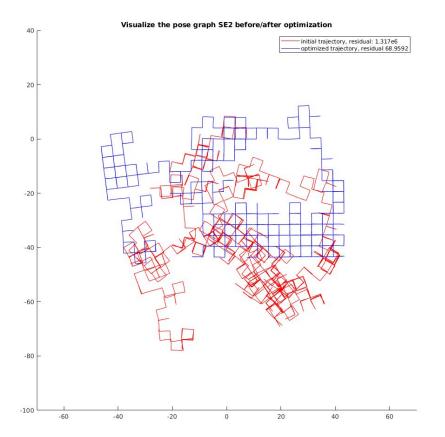
Method	Eigen CG	Eigen Cholesky	cuCholesky SP	cuCholesky DP	cuQR SP	cuQR DP
Time	6.6 min	49 s	3481 ms	2637 ms	40 s	46.4 s
# Iterations	6	6	22	6	6	6



- **SP:** Single Precision
- **DP:** Double Precision
- Iterations: number of iterations for Newton's method to converge.

Conclusion: Cuda Cholesky factorization in double precision delivers the fastest solution without any loss in accuracy.

Visualization of Optimization Results



Ground Truth

