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Introduction

Solving nonlinear least-square problems
are widely used in Robotics and
Computer Vision:

Simultaneous Localization and Mapping
Structure from Motion

Object Tracking

Etc.

All of the least-square solvers heavily rely on
efficient and accurate matrix factorization of
the linearized problem.

[Building Rome in a Day, ICCV, 2009]



Nonlinear Least-square Problem Revisited

Consider a SLAM problem with only pairwise constraint: An example of Jacobian matrix J (16362 x 10500)

N
X = argminz | F(@i-1, -Ti)H2
X =1

Using iterative method, e.g. Newton’s method, we update _——

Xk+l — xk 1 sx _ Jacobian Matrix of the
pairwise constraint

JOX =r<—___ Residual at each iteration

We can solve the following the least square problem:

0X = argmin ||AdX — b,

1. QR Factorization A =J. b=, /

2. Cholesky Factorization A =J"Jand b = Jr

e The LHS matrix is highly sparse.

e Ingeneral, M > N. More measurements than
unknowns.




Our Implementation

We focus on solving  §X = argmin ||46X — b||,

We implement and evaluate 6 different (CPU and GPU) benchmark algorithms that solve the LS problem on
sparse matrices. These use the Compressed Sparse Row/Column (CSR/CSC) format to represent the matrix.

Example : 0 0 0 O CSR(A) = (M, IM, JM)
A= 5 8 0 0 M=1[5836] All non-zero elements
00 3 0 IM=[00234] Index into M, first non-zero in row
06 0 0 JM=[0121] Column indices for all elements in M

Benchmark Algorithms:
e CPU Sparse Householder QR decomposition [Eigen C++ library]

e CPU Sparse Cholesky Decomposition for solving normal equations [Eigen C++ library]

e CPU Sparse Conjugate Gradient Method with Incomplete Cholesky Preconditioning . [Eigen C++ library]
e GPU Sparse Householder QR decomposition [cuSolverSP library] (Both single and double precision)

e GPU Sparse Cholesky Decomposition [cuSolverSP library] (Both single and double precision)

CSR Example Source : https://en.wikipedia.org/wiki/Sparse_matrix



GPGPU v.s. CPU Least-square Solver Comparison
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[,
(=}
@

[
(=}
S

[un
o
w

# Iterations

Method Eigen CG | Eigen Cholesky | cuCholesky SP || cuCholesky DP | cuQR SP | cuQR DP
Time 6.6 min 49 s 3481 ms 2637 ms 40 s 46.4 s
# Iterations 6 6 22 6 6 6
i — Eigen Cholesky
t Bomcmnecnden | e SP: Single Precision
e e o | @ DP:Double Precision
k4 CUDA Cholesky Double Precision e Iterations: number of

iterations for Newton’s
method to converge.

Conclusion: Cuda Cholesky
factorization in double precision
delivers the fastest solution without
any loss in accuracy.
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Visualization of Optimization Results

Visualize the pose graph SE2 before/after optimization

initial trajectory, residual: 1.317e6
optimized trajectory, residual 68.9592

Ground Truth
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