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This project required us to create an agent to play the game of carrom. Our agent was built                  
on this open-source simulator, made in pygame + pymunk. The agent ran in two game               
modes -  

● Single player: The agent aims to clear the entire board in as few moves as possible.  
● Two player: The goal in this setting is to play the game against an adversary and                

aims to win the game under the standard rules of carrom.  
 
We created several individual agents, both rule-based and by learning optimal actions using             
Reinforcement Learning techniques. Detailed descriptions of the implementation, analysis,         
observations and conclusions for each method are in the sections below. 

Problem Details 
The game board was modelled using a state space of size 800x800 pixels.  
 
For every turn, the agent had to choose an action comprising of a triple - (position, angle,                 
force). The agent is to choose a value between 0 and 1 for the position of the striker on the                    
baseline and the force with which to hit the striker and a value between -45 to 225 for the                   
angle at which the striker must be shot. However, the simulator adds a mean gaussian noise                
to each value in the triple.  
 
Formally, the agent receives a reward of 1 when it pockets a coin and a reward of 3 on                   
pocketing and covering the queen, if it does not result in a foul. The objective of the game,                  
however, is to win the game by clearing the board in minimum number of turns.  

 

  

https://github.com/samiranrl/Carrom_rl


Strategies for the one-player agent 

Deep Deterministic Policy Gradients method 
In [1], the authors have produced a policy gradient actor critic method which they have               
named Deep Deterministic Policy Gradients. Patrick Emami’s blog [2] implements this           
method using tensorflow neural net library. The original implementation was built to play and              
train on games in the OpenAI Gym. We build on this implementation for our deep               
reinforcement learning task. 
 
 
We encode the state as a 38x1 vector by reshaping the pairs of coin locations. The location                 
for coins that have already been pocketed are set to (0,0).  
Two deep neural networks have been used:  

● An actor network, which outputs an action, given the current state. The action is a               
continuous value within its valid ranges. Hence, the output layer in our actor network              
has 3 nodes, one each for position, angle and force. The output layer outputs values               
between -1 and 1, which are then rescaled appropriately. The actions used by the              
agent also have an added exploration noise, which we reduce as the agent gets              
trained for more number of episodes. 

● A critic network, which outputs the Q-value given the current state and the action              
given by the actor. 

In each turn (a move of the player), a TD(temporal difference) error is generated on which                
the critic network is trained. The actor network weights are updated using policy gradients. 
 
We also use experience replay to augment our training data. (State, action, reward, next              
state) tuples are stored in a replay memory and random mini-batches are sampled from it for                
training the networks. For training, we reshape the rewards a bit and give a reward of -1 to                  
the agent if the striker is pocketed.  
 
 

 



The above graph shows the mean Q-max value vs number of episodes trained for. Here,               
Q-max is the mean over all steps in an episode, of the maximum Q-values for a given state                  
and all possible actions. 
 

 
 
The above graph shows rewards collected by the agent for successive training episodes.             
Initially the rewards are negative because the agent tends to pocket the striker more often,               
without pocketing many coins. Later, it has learned to reduce the number of fouls it makes                
and hence, the reward values become positive. 
 
We use a maximum episode size threshold of 500 steps. To speed up training, we also used                 
some hacks like breaking out of an episode if the agent hasn’t pocketed any coins for over                 
100 continuous time steps. After using this, each episode took much shorter time to finish.  
 
When the agent seemed to have been trained enough (the Q-max value saturated), its              
performance was pretty good in the initial stages of the game, but once the number of coins                 
dropped below 3-4, it rarely could pocket any of them. On an average, the agent brought the                 
number down to 5 coins in ~20 turns and about 3 coins in ~30 turns, but beyond this it is                    
rarely able to pocket even 1 or 2 more coins in 100 subsequent moves. This problem was                 
even worse before and the agent couldn’t make points any further after a larger number of                
coins. We tried to tune the exploration noise added to the action, to overcome this, and the                 
above was perhaps the best result we could achieve. 
 

 

  



Q-learning 
We implemented a Q-learning model using deep neural network based on Ben Lau’s             

blog [3]. The game board was considered as a grid of size 16 X 16. The state is represented                   
as an array of size 256 where the (16*X+Y)th entry denotes the number of coins in that block,                  
X and Y being the coordinates in the 16 X 16 grid. The neural network takes in this state as                    
input, and generates an output which is an array of 256 numbers, where the (16*X+Y)th entry                
represents the Q(s,a) value for that action. The action here is different from the action which                
the agent takes(x, angle,force).  

Here, the “action” corresponds to the block where the target should be set. In other               
words, we must target our striker to hit an imaginary coin at this point. Once we get the Q                   
values corresponding to the 256 actions, we pick up the action which gives the maximum Q                
value. This argmax “action” determines the direction towards which we will be hitting. The              
(x,angle) values of the agent’s action is then determined by placing the striker on the               
base_line in such a way that a coin placed at the action block goes to the nearest pocket.                  
We always hit at the coin with force 1, since we observed over many(~100) sample test runs                 
that using a higher force empirically cleared the board in fewer moves.  

We trained the network using a reward of +1 for a coin, +3 for the queen, and -1 for a                    
striker foul. With the introduction of negative reward for striker foul, we observed that the               
network converged faster in the qMax vs Episode graph compared to no negative reward.              
We also use experience replay in the same way as mentioned in DDPG algorithm. We               
trained the network for 120 episodes, and for ensuring that the network didn’t get stuck               
within an episode for long, we bound the upper limit for the number of steps that could be                  
taken in an episode to 500. We found the following results : 
 

 
 



Here, qMax is the mean over all steps in an episode of the maximum Q(s,a) values                
generated for the state in that step. The graph shows that after about 30 episodes the                
action-value function converges.  
 
The Endtimes for various episodes were distributed as follows: 

 
 
As we can see, the values of endtimes ranges from 53 to 434, with most values at the low                   
end. The median of the data is 161. 
 



 
The above graph shows the running times of an episode(number of moves taken to 

clear the board) vs the Episode number. The network did not show any significant 
performance improvement for the overall runtimes. However, we did observe that after some 
episodes, the first 8-10 coins used to be pocketed within the first 10-20 moves, the next 5 
within the first 50, and the last few (3-4) coins took anything from about a 100 moves to 200 
moves.  

 
 
 
  



Rule-based 
This method involved hard-wiring actions of the bot, depending on specific scenarios. At a              
high-level, the agent played three types of actions -  

● Opening move 
● High Force 
● High Precision 

Opening Move 
On simulating our agent for several games, we observed that the key to pocket all coins in a                  
small number of moves is to play a ‘good’ first turn.  
 
To find a good action, we explored the action space (the state is fixed for first move) over                  
several actions using the one_step simulation, available along with the board simulator. The             
noise was turned off when finding the best first move for accuracy purposes.  
 
For each candidate first move, we collected information about the total number of coins              
pocketed. Few of these actions pocketed as many as 10 coins apart from the queen! We                
chose one of these actions as our opening move. 

High Force 
This was played during the initial stages of the game, with an aim to sink as many coins as                   
possible. The motivation for this strategy is that in the first few moves, most coins exist as                 
small clusters. One approach that can be adopted in such scenarios is to nudge the cluster                
such that some coin becomes ‘free’ and then pocket it using a precise shot.  
 
However, it was empirically observed that adopting such an approach resulted in large             
number of turns. Instead, our agent finds a cluster of coins on the board and shoots the                 
striker towards one coin in the cluster with the maximum possible force. This ensures that all                
the coins get spaced out over the board (some even get pocketed!) resulting in ‘better’ board                
state for subsequent turns.  

High Precision 
Once we identify a coin that may be isolated (by virtue of very few coins being on the board,                   
or otherwise), we aim to set the force and angle of our action so that the coin is shot into the                     
pocket (head-on) in a single turn. To identify the target, we iterate over all possible               
candidates and choose one that aligns with a pocket, so that a direct hit would be able to                  
pocket it. If no such coin is found, we choose a random coin.  
 
This was done by varying the force linearly with respect to the distance of the striker position                 
from the pocket it is aiming at, from a minimum to a maximum value, both of which are                  
hard-coded (rather, was found after careful experimentation). These min-max values were           
set to lower values for ‘thumb shots’ (shots below the base line) .  



Submitted one-player agent 
After several experiments with the above one-player strategies and their combinations, we            
found that the rule-based strategy performed the best, and hence was submitted for the final               
evaluation. The following improvements were made to the rule-based bot above to optimize             
for total number of turns.  

The Queen 
The queen is a special coin, not just because it gives a reward of 3 points but because one                   
needs to cover it to be able to get those three points. To increase the focus of the agent on                    
the queen, we use an epsilon-greedy like algorithm in our high-precision step. With             
probability epsilon, we choose the queen as the target.  
 
The value of epsilon itself is chosen depending on the number of coins already on board. We                 
empirically observed that increasing the probability as the number of total coins on board              
decrease improves the performance of the agent. Currently, it is set to  
0.5 + 1/(number of coins). This probability goes to 1 if only two coins remain.  

Hitting coins touching the sides of the board 
It was observed that if coins that are touching the sides of the board are hit head-on, there is                   
very little possibility of being able to pocket them. Instead, pocketing the coins is much               
easier when they are hit on the side.  
 
To incorporate this, we play the shot from one of the extremes of possible striker positions                
(chosen based on the location of the target coin on the board). This results in a side-shot                 
rather than a head-on shot and lesser number of turns to finish the board.  

Accounting for fouls 
We observed that several of our High Force moves resulted in the striker being aimed               
directly towards a pocket. With the high force with which it was shot, the striker ended up                 
getting pocketed, resulting in a foul. Therefore, in such cases, the angle of the action               
decided above was turned by a few degrees towards board frame closer to the coin.  

Analysis of performance 
We ran ~1000 experiments with this configuration of our agent and we could clear the board                
in an average of 24.023 turns. This is an improvement over the agent we submitted in                
Assignment 4, which cleared the board in 25.7 turns on average.  
 
  



Submitted two-player agent 
We extend our one-player agent for the two-player problem. We observed several games             
and found that using ‘High Force’ (described in the previous section) leads to pocketing of a                
large number of coins, in most cases involving some coins of the other color as well. We                 
enhanced our agent in the following ways -  

Null first action 
Unlike the one-player scenario, hitting the striker with a large force towards the initial board               
state pockets some opponent coins, hence resulting in a foul. Instead, if we are playing as                
White (ie, player 1), we just play a null shot (try not to hit any coins) by playing the action                    
(position = 0, angle = 0, force = 0). This also meant that after the opponent ‘break’, the coins                   
spread out on the board giving our agent a large variety of shots to choose from.  

Consider specific coins 
The code of the one-player agent was suitably modified so as not to consider coins of the                 
opposite colour when building our strategies.  

Aim at isolated coins 
Since, we use only precise shots to play, choosing targets which do not have any               
obstructions on its way to the pocket is very important. To do this, we find the number of                  
coins in a cone of angle 10o with its axis as the straight line joining the striker to the nearest                     
pocket to the target coin. If there are any coins in the path, then we don’t include the coin in                    
the list of candidate targets.  
 
We ran several experiments using these settings and observed that we won very few              
matches against the agent submitted in Assignment 4 (suitably modified to hit coins of its               
own colour). Since, the performance of the player didn’t improve, we decided not to use this                
strategy in the final bot.  

Analysis of performance 
We ran some experiments by playing our submitted agent against the following bots -  

● The random bot. Chooses a random action. We beat this agent 100% of the time 
● Our assignment 4 submission. We beat this agent ~60% times 
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